Spaces:
Runtime error
Runtime error
File size: 30,515 Bytes
82bf0c3 238332d 82bf0c3 0b55aa3 82bf0c3 a8e3881 53b6fb0 a8e3881 82bf0c3 e68508d 82bf0c3 a8e3881 82bf0c3 0b55aa3 82bf0c3 238332d 82bf0c3 53b6fb0 82bf0c3 84130c6 82bf0c3 84130c6 238332d 82bf0c3 ed606c7 8ce3f3b 82bf0c3 8ce3f3b 82bf0c3 d047751 82bf0c3 9fbcf89 82bf0c3 53b6fb0 82bf0c3 53b6fb0 82bf0c3 84130c6 82bf0c3 84130c6 82bf0c3 4d89326 82bf0c3 a8e3881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# Copyright (c) 2024 Jaerin Lee
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import sys
sys.path.append('../../src')
import argparse
import random
import time
import json
import os
import glob
import pathlib
import base64
from io import BytesIO
from functools import partial
from pprint import pprint
import numpy as np
from PIL import Image
import torch
import gradio as gr
from huggingface_hub import snapshot_download
import spaces
from model import StableMultiDiffusionSDXLPipeline
from util import seed_everything
from prompt_util import preprocess_prompts, _quality_dict, _style_dict
from share_btn import community_icon_html, loading_icon_html, share_js
### Utils
def log_state(state):
pprint(vars(opt))
if isinstance(state, gr.State):
state = state.value
pprint(vars(state))
def is_empty_image(im: Image.Image) -> bool:
if im is None:
return True
im = np.array(im)
has_alpha = (im.shape[2] == 4)
if not has_alpha:
return False
elif im.sum() == 0:
return True
else:
return False
### Argument passing
# parser = argparse.ArgumentParser(description='Semantic Palette demo powered by StreamMultiDiffusion with SDXL support.')
# parser.add_argument('-H', '--height', type=int, default=1024)
# parser.add_argument('-W', '--width', type=int, default=2560)
# parser.add_argument('--model', type=str, default=None)
# parser.add_argument('--bootstrap_steps', type=int, default=1)
# parser.add_argument('--seed', type=int, default=-1)
# parser.add_argument('--device', type=int, default=0)
# parser.add_argument('--port', type=int, default=8000)
# opt = parser.parse_args()
opt = argparse.Namespace()
opt.height = 1024
opt.width = 2560
opt.model = None
opt.bootstrap_steps = 3
opt.seed = -1
# opt.device = 0
# opt.port = 8000
### Global variables and data structures
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
if opt.model is None:
model_dict = {
'Animagine XL 3.1': 'cagliostrolab/animagine-xl-3.1',
}
else:
if opt.model.endswith('.safetensors'):
opt.model = os.path.abspath(os.path.join('checkpoints', opt.model))
model_dict = {os.path.splitext(os.path.basename(opt.model))[0]: opt.model}
models = {
k: StableMultiDiffusionSDXLPipeline(device, hf_key=v, has_i2t=False).cuda()
for k, v in model_dict.items()
}
prompt_suggestions = [
'1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer',
'1boy, solo, portrait, looking at viewer, white t-shirt, brown hair',
'1girl, arima kana, oshi no ko, solo, upper body, from behind',
]
opt.max_palettes = 5
opt.default_prompt_strength = 1.0
opt.default_mask_strength = 1.0
opt.default_mask_std = 0.0
opt.default_negative_prompt = (
'nsfw, worst quality, bad quality, normal quality, cropped, framed'
)
opt.verbose = True
opt.colors = [
'#000000',
'#2692F3',
'#F89E12',
'#16C232',
'#F92F6C',
'#AC6AEB',
# '#92C62C',
# '#92C6EC',
# '#FECAC0',
]
### Event handlers
def add_palette(state):
old_actives = state.active_palettes
state.active_palettes = min(state.active_palettes + 1, opt.max_palettes)
if opt.verbose:
log_state(state)
if state.active_palettes != old_actives:
return [state] + [
gr.update() if state.active_palettes != opt.max_palettes else gr.update(visible=False)
] + [
gr.update() if i != state.active_palettes - 1 else gr.update(value=state.prompt_names[i + 1], visible=True)
for i in range(opt.max_palettes)
]
else:
return [state] + [gr.update() for i in range(opt.max_palettes + 1)]
def select_palette(state, button, idx):
if idx < 0 or idx > opt.max_palettes:
idx = 0
old_idx = state.current_palette
if old_idx == idx:
return [state] + [gr.update() for _ in range(opt.max_palettes + 7)]
state.current_palette = idx
if opt.verbose:
log_state(state)
updates = [state] + [
gr.update() if i not in (idx, old_idx) else
gr.update(variant='secondary') if i == old_idx else gr.update(variant='primary')
for i in range(opt.max_palettes + 1)
]
label = 'Background' if idx == 0 else f'Palette {idx}'
updates.extend([
gr.update(value=button, interactive=(idx > 0)),
gr.update(value=state.prompts[idx], label=f'Edit Prompt for {label}'),
gr.update(value=state.neg_prompts[idx], label=f'Edit Negative Prompt for {label}'),
(
gr.update(value=state.mask_strengths[idx - 1], interactive=True) if idx > 0 else
gr.update(value=opt.default_mask_strength, interactive=False)
),
(
gr.update(value=state.prompt_strengths[idx - 1], interactive=True) if idx > 0 else
gr.update(value=opt.default_prompt_strength, interactive=False)
),
(
gr.update(value=state.mask_stds[idx - 1], interactive=True) if idx > 0 else
gr.update(value=opt.default_mask_std, interactive=False)
),
])
return updates
def change_prompt_strength(state, strength):
if state.current_palette == 0:
return state
state.prompt_strengths[state.current_palette - 1] = strength
if opt.verbose:
log_state(state)
return state
def change_std(state, std):
if state.current_palette == 0:
return state
state.mask_stds[state.current_palette - 1] = std
if opt.verbose:
log_state(state)
return state
def change_mask_strength(state, strength):
if state.current_palette == 0:
return state
state.mask_strengths[state.current_palette - 1] = strength
if opt.verbose:
log_state(state)
return state
def reset_seed(state, seed):
state.seed = seed
if opt.verbose:
log_state(state)
return state
def rename_prompt(state, name):
state.prompt_names[state.current_palette] = name
if opt.verbose:
log_state(state)
return [state] + [
gr.update() if i != state.current_palette else gr.update(value=name)
for i in range(opt.max_palettes + 1)
]
def change_prompt(state, prompt):
state.prompts[state.current_palette] = prompt
if opt.verbose:
log_state(state)
return state
def change_neg_prompt(state, neg_prompt):
state.neg_prompts[state.current_palette] = neg_prompt
if opt.verbose:
log_state(state)
return state
def select_model(state, model_id):
state.model_id = model_id
if opt.verbose:
log_state(state)
return state
def select_style(state, style_name):
state.style_name = style_name
if opt.verbose:
log_state(state)
return state
def select_quality(state, quality_name):
state.quality_name = quality_name
if opt.verbose:
log_state(state)
return state
def import_state(state, json_text):
current_palette = state.current_palette
# active_palettes = state.active_palettes
state = argparse.Namespace(**json.loads(json_text))
state.active_palettes = opt.max_palettes
return [state] + [
gr.update(value=v, visible=True) for v in state.prompt_names
] + [
state.model_id,
state.style_name,
state.quality_name,
state.prompts[current_palette],
state.prompt_names[current_palette],
state.neg_prompts[current_palette],
state.prompt_strengths[current_palette - 1],
state.mask_strengths[current_palette - 1],
state.mask_stds[current_palette - 1],
state.seed,
]
### Main worker
@spaces.GPU
def generate(state, *args, **kwargs):
return models[state.model_id](*args, **kwargs)
def run(state, drawpad):
seed_everything(state.seed if state.seed >=0 else np.random.randint(2147483647))
print('Generate!')
background = drawpad['background'].convert('RGBA')
inpainting_mode = np.asarray(background).sum() != 0
print('Inpainting mode: ', inpainting_mode)
user_input = np.asarray(drawpad['layers'][0]) # (H, W, 4)
foreground_mask = torch.tensor(user_input[..., -1])[None, None] # (1, 1, H, W)
user_input = torch.tensor(user_input[..., :-1]) # (H, W, 3)
palette = torch.tensor([
tuple(int(s[i+1:i+3], 16) for i in (0, 2, 4))
for s in opt.colors[1:]
]) # (N, 3)
masks = (palette[:, None, None, :] == user_input[None]).all(dim=-1)[:, None, ...] # (N, 1, H, W)
has_masks = [i for i, m in enumerate(masks.sum(dim=(1, 2, 3)) == 0) if not m]
print('Has mask: ', has_masks)
masks = masks * foreground_mask
masks = masks[has_masks]
if inpainting_mode:
prompts = [state.prompts[v + 1] for v in has_masks]
negative_prompts = [state.neg_prompts[v + 1] for v in has_masks]
mask_strengths = [state.mask_strengths[v] for v in has_masks]
mask_stds = [state.mask_stds[v] for v in has_masks]
prompt_strengths = [state.prompt_strengths[v] for v in has_masks]
else:
masks = torch.cat([torch.ones_like(foreground_mask), masks], dim=0)
prompts = [state.prompts[0]] + [state.prompts[v + 1] for v in has_masks]
negative_prompts = [state.neg_prompts[0]] + [state.neg_prompts[v + 1] for v in has_masks]
mask_strengths = [1] + [state.mask_strengths[v] for v in has_masks]
mask_stds = [0] + [state.mask_stds[v] for v in has_masks]
prompt_strengths = [1] + [state.prompt_strengths[v] for v in has_masks]
prompts, negative_prompts = preprocess_prompts(
prompts, negative_prompts, style_name=state.style_name, quality_name=state.quality_name)
image = generate(
state,
prompts,
negative_prompts,
masks=masks,
mask_strengths=mask_strengths,
mask_stds=mask_stds,
prompt_strengths=prompt_strengths,
background=background.convert('RGB'),
background_prompt=state.prompts[0],
background_negative_prompt=state.neg_prompts[0],
height=opt.height,
width=opt.width,
bootstrap_steps=opt.bootstrap_steps,
guidance_scale=0,
)
return image
# buffered = BytesIO()
# image.save(buffered, format="JPEG")
# img_str = base64.b64encode(buffered.getvalue())
# return image, img_str
### Load examples
root = pathlib.Path(__file__).parent
print(root)
example_root = os.path.join(root, 'examples')
example_images = glob.glob(os.path.join(example_root, '*.png'))
example_images = [Image.open(i) for i in example_images]
with open(os.path.join(example_root, 'prompt_background_advanced.txt')) as f:
prompts_background = [l.strip() for l in f.readlines() if l.strip() != '']
with open(os.path.join(example_root, 'prompt_girl.txt')) as f:
prompts_girl = [l.strip() for l in f.readlines() if l.strip() != '']
with open(os.path.join(example_root, 'prompt_boy.txt')) as f:
prompts_boy = [l.strip() for l in f.readlines() if l.strip() != '']
with open(os.path.join(example_root, 'prompt_props.txt')) as f:
prompts_props = [l.strip() for l in f.readlines() if l.strip() != '']
prompts_props = {l.split(',')[0].strip(): ','.join(l.split(',')[1:]).strip() for l in prompts_props}
prompt_background = lambda: random.choice(prompts_background)
prompt_girl = lambda: random.choice(prompts_girl)
prompt_boy = lambda: random.choice(prompts_boy)
prompt_props = lambda: np.random.choice(list(prompts_props.keys()), size=(opt.max_palettes - 2), replace=False).tolist()
### Main application
css = f"""
#run-button {{
font-size: 30pt;
background-image: linear-gradient(to right, #4338ca 0%, #26a0da 51%, #4338ca 100%);
margin: 0;
padding: 15px 45px;
text-align: center;
text-transform: uppercase;
transition: 0.5s;
background-size: 200% auto;
color: white;
box-shadow: 0 0 20px #eee;
border-radius: 10px;
display: block;
background-position: right center;
}}
#run-button:hover {{
background-position: left center;
color: #fff;
text-decoration: none;
}}
#semantic-palette {{
border-style: solid;
border-width: 0.2em;
border-color: #eee;
}}
#semantic-palette:hover {{
box-shadow: 0 0 20px #eee;
}}
#output-screen {{
width: 100%;
aspect-ratio: {opt.width} / {opt.height};
}}
.layer-wrap {{
display: none;
}}
#share-btn-container {{
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
}}
#share-btn {{
all: initial;
color: #ffffff;font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;right:0;
}}
#share-btn * {{
all: unset;
}}
#share-btn-container div:nth-child(-n+2){{
width: auto !important;
min-height: 0px !important;
}}
#share-btn-container .wrap {{
display: none !important;
}}
#output-b64 {{
display: none !important;
}}
"""
for i in range(opt.max_palettes + 1):
css = css + f"""
.secondary#semantic-palette-{i} {{
background-image: linear-gradient(to right, #374151 0%, #374151 71%, {opt.colors[i]} 100%);
color: white;
}}
.primary#semantic-palette-{i} {{
background-image: linear-gradient(to right, #4338ca 0%, #4338ca 71%, {opt.colors[i]} 100%);
color: white;
}}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
iface = argparse.Namespace()
def _define_state():
state = argparse.Namespace()
# Cursor.
state.current_palette = 0 # 0: Background; 1,2,3,...: Layers
state.model_id = list(model_dict.keys())[0]
state.style_name = '(None)'
state.quality_name = 'Standard v3.1'
# State variables (one-hot).
state.active_palettes = 1
# Front-end initialized to the default values.
prompt_props_ = prompt_props()
state.prompt_names = [
'π Background',
'π§ Girl',
'π¦ Boy',
] + prompt_props_ + ['π¨ New Palette' for _ in range(opt.max_palettes - 5)]
state.prompts = [
prompt_background(),
prompt_girl(),
prompt_boy(),
] + [prompts_props[k] for k in prompt_props_] + ['' for _ in range(opt.max_palettes - 5)]
state.neg_prompts = [
opt.default_negative_prompt
+ (', humans, humans, humans' if i == 0 else '')
for i in range(opt.max_palettes + 1)
]
state.prompt_strengths = [opt.default_prompt_strength for _ in range(opt.max_palettes)]
state.mask_strengths = [opt.default_mask_strength for _ in range(opt.max_palettes)]
state.mask_stds = [opt.default_mask_std for _ in range(opt.max_palettes)]
state.seed = opt.seed
return state
state = gr.State(value=_define_state)
### Demo user interface
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>π₯π§ Semantic Paint <b>X</b> Animagine XL 3.1 π¨π₯</h1>
<h5 style="margin: 0;">powered by</h5>
<h3 style="margin-bottom: 0;">StreamMultiDiffusion: Real-Time Interactive Generation with Region-Based Semantic Control <em>and</em></h3>
<h3 style="margin-top: 0;">Animagine XL 3.1 by Cagliostro Research Lab</h3>
<h5 style="margin: 0;">If you β€οΈ our project, please visit our Github and give us a π!</h5>
</br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://arxiv.org/abs/2403.09055'>
<img src="https://img.shields.io/badge/arXiv-2403.09055-red">
</a>
<a href='https://jaerinlee.com/research/StreamMultiDiffusion'>
<img src='https://img.shields.io/badge/Project-Page-green' alt='Project Page'>
</a>
<a href='https://github.com/ironjr/StreamMultiDiffusion'>
<img src='https://img.shields.io/github/stars/ironjr/StreamMultiDiffusion?label=Github&color=blue'>
</a>
<a href='https://twitter.com/_ironjr_'>
<img src='https://img.shields.io/twitter/url?label=_ironjr_&url=https%3A%2F%2Ftwitter.com%2F_ironjr_'>
</a>
<a href='https://github.com/ironjr/StreamMultiDiffusion/blob/main/LICENSE'>
<img src='https://img.shields.io/badge/license-MIT-lightgrey'>
</a>
<a href='https://huggingface.co/papers/2403.09055'>
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Paper-StreamMultiDiffusion-yellow'>
</a>
<a href='https://huggingface.co/cagliostrolab/animagine-xl-3.1'>
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Model-AnimagineXL3.1-yellow'>
</a>
<a href='https://huggingface.co/spaces/ironjr/SemanticPalette'>
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Demo-v1.5-yellow'>
</a>
</div>
</div>
</div>
<div>
</br>
</div>
"""
)
with gr.Row():
iface.image_slot = gr.Image(
interactive=False,
show_label=False,
show_download_button=True,
type='pil',
label='Generated Result',
elem_id='output-screen',
value=lambda: random.choice(example_images),
)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_id='semantic-palette'):
gr.HTML(
"""
<div style="justify-content: center; align-items: center;">
<br/>
<h3 style="margin: 0; text-align: center;"><b>π§ Semantic Palette π¨</b></h3>
<br/>
</div>
"""
)
iface.btn_semantics = [gr.Button(
value=state.value.prompt_names[0],
variant='primary',
elem_id='semantic-palette-0',
)]
for i in range(opt.max_palettes):
iface.btn_semantics.append(gr.Button(
value=state.value.prompt_names[i + 1],
variant='secondary',
visible=(i < state.value.active_palettes),
elem_id=f'semantic-palette-{i + 1}'
))
iface.btn_add_palette = gr.Button(
value='Create New Semantic Brush',
variant='primary',
)
with gr.Accordion(label='Import/Export Semantic Palette', open=False):
iface.tbox_state_import = gr.Textbox(label='Put Palette JSON Here To Import')
iface.json_state_export = gr.JSON(label='Exported Palette')
iface.btn_export_state = gr.Button("Export Palette β‘οΈ JSON", variant='primary')
iface.btn_import_state = gr.Button("Import JSON β‘οΈ Palette", variant='secondary')
gr.HTML(
"""
<div>
</br>
</div>
<div style="justify-content: center; align-items: center;">
<h3 style="margin: 0; text-align: center;"><b>βUsageβ</b></h3>
</br>
<div style="justify-content: center; align-items: left; text-align: left;">
<p>1-1. Type in the background prompt. Background is not required if you paint the whole drawpad.</p>
<p>1-2. (Optional: <em><b>Inpainting mode</b></em>) Uploading a background image will make the app into inpainting mode. Removing the image returns to the creation mode. In the inpainting mode, increasing the <em>Mask Blur STD</em> > 8 for every colored palette is recommended for smooth boundaries.</p>
<p>2. Select a semantic brush by clicking onto one in the <b>Semantic Palette</b> above. Edit prompt for the semantic brush.</p>
<p>2-1. If you are willing to draw more diverse images, try <b>Create New Semantic Brush</b>.</p>
<p>3. Start drawing in the <b>Semantic Drawpad</b> tab. The brush color is directly linked to the semantic brushes.</p>
<p>4. Click [<b>GENERATE!</b>] button to create your (large-scale) artwork!</p>
</div>
</div>
"""
)
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<h5 style="margin: 0;"><b>... or run in your own π€ space!</b></h5>
</div>
"""
)
gr.DuplicateButton()
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=3):
iface.ctrl_semantic = gr.ImageEditor(
image_mode='RGBA',
sources=['upload', 'clipboard', 'webcam'],
transforms=['crop'],
crop_size=(opt.width, opt.height),
brush=gr.Brush(
colors=opt.colors[1:],
color_mode="fixed",
),
type='pil',
label='Semantic Drawpad',
elem_id='drawpad',
)
with gr.Column(scale=1):
iface.btn_generate = gr.Button(
value='Generate!',
variant='primary',
# scale=1,
elem_id='run-button'
)
# with gr.Group(elem_id='share-btn-container'):
# gr.HTML(community_icon_html)
# gr.HTML(loading_icon_html)
# iface.btn_share = gr.Button('Share with Community', elem_id='share-btn')
# iface.image_b64 = gr.Textbox(elem_id='output-b64')
iface.model_select = gr.Radio(
list(model_dict.keys()),
label='Stable Diffusion Checkpoint',
info='Choose your favorite style.',
value=state.value.model_id,
)
with gr.Accordion(label='Prompt Engineering', open=True):
iface.quality_select = gr.Dropdown(
label='Quality Presets',
interactive=True,
choices=list(_quality_dict.keys()),
value='Standard v3.1',
)
iface.style_select = gr.Radio(
label='Style Preset',
container=True,
interactive=True,
choices=list(_style_dict.keys()),
value='(None)',
)
with gr.Group(elem_id='control-panel'):
with gr.Row():
iface.tbox_prompt = gr.Textbox(
label='Edit Prompt for Background',
info='What do you want to draw?',
value=state.value.prompts[0],
placeholder=lambda: random.choice(prompt_suggestions),
scale=2,
)
iface.tbox_name = gr.Textbox(
label='Edit Brush Name',
info='Just for your convenience.',
value=state.value.prompt_names[0],
placeholder='π Background',
scale=1,
)
with gr.Row():
iface.tbox_neg_prompt = gr.Textbox(
label='Edit Negative Prompt for Background',
info='Add unwanted objects for this semantic brush.',
value=opt.default_negative_prompt,
scale=2,
)
iface.slider_strength = gr.Slider(
label='Prompt Strength',
info='Blends fg & bg in the prompt level, >0.8 Preferred.',
minimum=0.5,
maximum=1.0,
value=opt.default_prompt_strength,
scale=1,
)
with gr.Row():
iface.slider_alpha = gr.Slider(
label='Mask Alpha',
info='Factor multiplied to the mask before quantization. Extremely sensitive, >0.98 Preferred.',
minimum=0.5,
maximum=1.0,
value=opt.default_mask_strength,
)
iface.slider_std = gr.Slider(
label='Mask Blur STD',
info='Blends fg & bg in the latent level, 0 for generation, 8-32 for inpainting.',
minimum=0.0001,
maximum=100.0,
value=opt.default_mask_std,
)
iface.slider_seed = gr.Slider(
label='Seed',
info='The global seed.',
minimum=-1,
maximum=2147483647,
step=1,
value=opt.seed,
)
### Attach event handlers
for idx, btn in enumerate(iface.btn_semantics):
btn.click(
fn=partial(select_palette, idx=idx),
inputs=[state, btn],
outputs=[state] + iface.btn_semantics + [
iface.tbox_name,
iface.tbox_prompt,
iface.tbox_neg_prompt,
iface.slider_alpha,
iface.slider_strength,
iface.slider_std,
],
api_name=f'select_palette_{idx}',
)
iface.btn_add_palette.click(
fn=add_palette,
inputs=state,
outputs=[state, iface.btn_add_palette] + iface.btn_semantics[1:],
api_name='create_new',
)
iface.btn_generate.click(
fn=run,
inputs=[state, iface.ctrl_semantic],
# outputs=[iface.image_slot, iface.image_b64],
outputs=iface.image_slot,
api_name='run',
)
iface.slider_alpha.input(
fn=change_mask_strength,
inputs=[state, iface.slider_alpha],
outputs=state,
api_name='change_alpha',
)
iface.slider_std.input(
fn=change_std,
inputs=[state, iface.slider_std],
outputs=state,
api_name='change_std',
)
iface.slider_strength.input(
fn=change_prompt_strength,
inputs=[state, iface.slider_strength],
outputs=state,
api_name='change_strength',
)
iface.slider_seed.input(
fn=reset_seed,
inputs=[state, iface.slider_seed],
outputs=state,
api_name='reset_seed',
)
iface.tbox_name.input(
fn=rename_prompt,
inputs=[state, iface.tbox_name],
outputs=[state] + iface.btn_semantics,
api_name='prompt_rename',
)
iface.tbox_prompt.input(
fn=change_prompt,
inputs=[state, iface.tbox_prompt],
outputs=state,
api_name='prompt_edit',
)
iface.tbox_neg_prompt.input(
fn=change_neg_prompt,
inputs=[state, iface.tbox_neg_prompt],
outputs=state,
api_name='neg_prompt_edit',
)
iface.model_select.change(
fn=select_model,
inputs=[state, iface.model_select],
outputs=state,
api_name='model_select',
)
iface.style_select.change(
fn=select_style,
inputs=[state, iface.style_select],
outputs=state,
api_name='style_select',
)
iface.quality_select.change(
fn=select_quality,
inputs=[state, iface.quality_select],
outputs=state,
api_name='quality_select',
)
# iface.btn_share.click(None, [], [], js=share_js)
iface.btn_export_state.click(lambda x: vars(x), state, iface.json_state_export)
iface.btn_import_state.click(import_state, [state, iface.tbox_state_import], [
state,
*iface.btn_semantics,
iface.model_select,
iface.style_select,
iface.quality_select,
iface.tbox_prompt,
iface.tbox_name,
iface.tbox_neg_prompt,
iface.slider_strength,
iface.slider_alpha,
iface.slider_std,
iface.slider_seed,
])
gr.HTML(
"""
<div class="footer">
<p>We thank <a href="https://cagliostrolab.net/">Cagliostro Research Lab</a> for their permission to use <a href="https://huggingface.co/cagliostrolab/animagine-xl-3.1">Animagine XL 3.1</a> model under academic purpose.
Note that the MIT license only applies to StreamMultiDiffusion and Semantic Palette demo app, but not Animagine XL 3.1 model, which is distributed under <a href="https://freedevproject.org/faipl-1.0-sd/">Fair AI Public License 1.0-SD</a>.
</p>
</div>
"""
)
if __name__ == '__main__':
demo.queue(max_size=20).launch() |