ZodiUOA's picture
Upload 3 files
459dcd5
from flask import Flask,render_template,url_for,request
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification
# name = 'Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset'
# tokenizer = AutoTokenizer.from_pretrained(name)
# model = AutoModelForSequenceClassification.from_pretrained('/Users/jorgemeneumoreno/Desktop/FakeNewsClassifier/model', max_position_embeddings=512)
#pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-classification", model="Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset")
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset")
model = AutoModelForSequenceClassification.from_pretrained('model', max_position_embeddings=512)
application = app = Flask(__name__)
@application.route('/')
def home():
return render_template('home.html')
@application.route('/predict',methods=['POST'])
def predict():
if request.method == 'POST':
input_message = request.form['message']
if len(input_message)>=511:
input_message= input_message[0:512]
if input_message.strip() == "":
result="Please enter the body of an article"
my_input = [input_message]
preds = pipe(my_input, return_all_scores=True)
output_dict = {'Real': preds[0][0]['score'], 'Fake': preds[0][1]['score']}
print(output_dict)
print(list(output_dict.keys()), list(output_dict.values()))
props = [(round(float(v)*100, 2)) for v in list(output_dict.values())]
print(props)
return render_template('result.html', mess = input_message, classes = list(output_dict.keys()), props=props)
if __name__ == '__main__':
app.run(port=5000,debug=True)