ZoniaQwen / chatpdf.py
ZoniaChatbot's picture
Update chatpdf.py
7656eec verified
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
"""
import argparse
import hashlib
import os
import re
from threading import Thread
from typing import Union, List
import jieba
import torch
from loguru import logger
from peft import PeftModel
from similarities import (
EnsembleSimilarity,
BertSimilarity,
BM25Similarity,
TfidfSimilarity
)
from similarities.similarity import SimilarityABC
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
GenerationConfig,
AutoModelForSequenceClassification,
)
jieba.setLogLevel("ERROR")
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
PROMPT_TEMPLATE = """Basándose únicamente en la información proporcionada a continuación, responda a las preguntas del usuario de manera concisa y profesional.
No se debe responder a preguntas relacionadas con sentimientos, emociones, temas personales o cualquier información que no esté explícitamente presente en el contenido proporcionado.
Si la pregunta se refiere a un artículo específico y no se encuentra en el contenido proporcionado, diga: "No se puede encontrar el artículo solicitado en la información conocida".
Contenido conocido:
{context_str}
Pregunta:
{query_str}
"""
class SentenceSplitter:
def __init__(self, chunk_size: int = 250, chunk_overlap: int = 50):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
def split_text(self, text: str) -> List[str]:
if self._is_has_chinese(text):
return self._split_chinese_text(text)
else:
return self._split_english_text(text)
def _split_chinese_text(self, text: str) -> List[str]:
sentence_endings = {'\n', '。', '!', '?', ';', '…'} # 句末标点符号
chunks, current_chunk = [], ''
for word in jieba.cut(text):
if len(current_chunk) + len(word) > self.chunk_size:
chunks.append(current_chunk.strip())
current_chunk = word
else:
current_chunk += word
if word[-1] in sentence_endings and len(current_chunk) > self.chunk_size - self.chunk_overlap:
chunks.append(current_chunk.strip())
current_chunk = ''
if current_chunk:
chunks.append(current_chunk.strip())
if self.chunk_overlap > 0 and len(chunks) > 1:
chunks = self._handle_overlap(chunks)
return chunks
def _split_english_text(self, text: str) -> List[str]:
# 使用正则表达式按句子分割英文文本
sentences = re.split(r'(?<=[.!?])\s+', text.replace('\n', ' '))
chunks = []
current_chunk = ''
for sentence in sentences:
if len(current_chunk) + len(sentence) <= self.chunk_size:
current_chunk += (' ' if current_chunk else '') + sentence
else:
if len(sentence) > self.chunk_size:
for i in range(0, len(sentence), self.chunk_size):
chunks.append(sentence[i:i + self.chunk_size])
current_chunk = ''
else:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk: # Add the last chunk
chunks.append(current_chunk)
if self.chunk_overlap > 0 and len(chunks) > 1:
chunks = self._handle_overlap(chunks)
return chunks
def _is_has_chinese(self, text: str) -> bool:
# check if contains chinese characters
if any("\u4e00" <= ch <= "\u9fff" for ch in text):
return True
else:
return False
def _handle_overlap(self, chunks: List[str]) -> List[str]:
# 处理块间重叠
overlapped_chunks = []
for i in range(len(chunks) - 1):
chunk = chunks[i] + ' ' + chunks[i + 1][:self.chunk_overlap]
overlapped_chunks.append(chunk.strip())
overlapped_chunks.append(chunks[-1])
return overlapped_chunks
class Rag:
def __init__(
self,
similarity_model: SimilarityABC = None,
generate_model_type: str = "auto",
generate_model_name_or_path: str = "Qwen/Qwen2-0.5B-Instruct",
lora_model_name_or_path: str = None,
corpus_files: Union[str, List[str]] = None,
save_corpus_emb_dir: str = "./corpus_embs/",
device: str = None,
int8: bool = False,
int4: bool = False,
chunk_size: int = 250,
chunk_overlap: int = 0,
rerank_model_name_or_path: str = None,
enable_history: bool = False,
num_expand_context_chunk: int = 2,
similarity_top_k: int = 10,
rerank_top_k: int = 3,
):
"""
Init RAG model.
:param similarity_model: similarity model, default None, if set, will use it instead of EnsembleSimilarity
:param generate_model_type: generate model type
:param generate_model_name_or_path: generate model name or path
:param lora_model_name_or_path: lora model name or path
:param corpus_files: corpus files
:param save_corpus_emb_dir: save corpus embeddings dir, default ./corpus_embs/
:param device: device, default None, auto select gpu or cpu
:param int8: use int8 quantization, default False
:param int4: use int4 quantization, default False
:param chunk_size: chunk size, default 250
:param chunk_overlap: chunk overlap, default 0, can not set to > 0 if num_expand_context_chunk > 0
:param rerank_model_name_or_path: rerank model name or path, default 'BAAI/bge-reranker-base'
:param enable_history: enable history, default False
:param num_expand_context_chunk: num expand context chunk, default 2, if set to 0, will not expand context chunk
:param similarity_top_k: similarity_top_k, default 5, similarity model search k corpus chunks
:param rerank_top_k: rerank_top_k, default 3, rerank model search k corpus chunks
"""
if torch.cuda.is_available():
default_device = torch.device(0)
elif torch.backends.mps.is_available():
default_device = torch.device('cpu')
else:
default_device = torch.device('cpu')
self.device = device or default_device
if num_expand_context_chunk > 0 and chunk_overlap > 0:
logger.warning(f" 'num_expand_context_chunk' and 'chunk_overlap' cannot both be greater than zero. "
f" 'chunk_overlap' has been set to zero by default.")
chunk_overlap = 0
self.text_splitter = SentenceSplitter(chunk_size, chunk_overlap)
if similarity_model is not None:
self.sim_model = similarity_model
else:
m1 = BertSimilarity(model_name_or_path="shibing624/text2vec-base-multilingual", device=self.device)
m2 = BM25Similarity()
m3 = TfidfSimilarity()
default_sim_model = EnsembleSimilarity(similarities=[m1, m2, m3], weights=[0.5, 0.5, 0.5], c=2) # Ajuste los pesos según los resultados
self.sim_model = default_sim_model
self.gen_model, self.tokenizer = self._init_gen_model(
generate_model_type,
generate_model_name_or_path,
peft_name=lora_model_name_or_path,
int8=int8,
int4=int4,
)
self.history = []
self.corpus_files = corpus_files
if corpus_files:
self.add_corpus(corpus_files)
self.save_corpus_emb_dir = save_corpus_emb_dir
if rerank_model_name_or_path is None:
rerank_model_name_or_path = "BAAI/bge-reranker-large"
if rerank_model_name_or_path:
self.rerank_tokenizer = AutoTokenizer.from_pretrained(rerank_model_name_or_path)
self.rerank_model = AutoModelForSequenceClassification.from_pretrained(rerank_model_name_or_path)
self.rerank_model.to(self.device)
self.rerank_model.eval()
else:
self.rerank_model = None
self.rerank_tokenizer = None
self.enable_history = enable_history
self.similarity_top_k = similarity_top_k
self.num_expand_context_chunk = num_expand_context_chunk
self.rerank_top_k = rerank_top_k
def __str__(self):
return f"Similarity model: {self.sim_model}, Generate model: {self.gen_model}"
def _init_gen_model(
self,
gen_model_type: str,
gen_model_name_or_path: str,
peft_name: str = None,
int8: bool = False,
int4: bool = False,
):
"""Init generate model."""
if int8 or int4:
device_map = None
else:
device_map = "auto"
model_class, tokenizer_class = MODEL_CLASSES[gen_model_type]
tokenizer = tokenizer_class.from_pretrained(gen_model_name_or_path, trust_remote_code=True)
model = model_class.from_pretrained(
gen_model_name_or_path,
load_in_8bit=int8 if gen_model_type not in ['baichuan', 'chatglm'] else False,
load_in_4bit=int4 if gen_model_type not in ['baichuan', 'chatglm'] else False,
torch_dtype="auto",
device_map=device_map,
trust_remote_code=True,
)
if self.device == torch.device('cpu'):
model.float()
if gen_model_type in ['baichuan', 'chatglm']:
if int4:
model = model.quantize(4).cuda()
elif int8:
model = model.quantize(8).cuda()
try:
model.generation_config = GenerationConfig.from_pretrained(gen_model_name_or_path, trust_remote_code=True)
except Exception as e:
logger.warning(f"Failed to load generation config from {gen_model_name_or_path}, {e}")
if peft_name:
model = PeftModel.from_pretrained(
model,
peft_name,
torch_dtype="auto",
)
logger.info(f"Loaded peft model from {peft_name}")
model.eval()
return model, tokenizer
def _get_chat_input(self):
messages = []
for conv in self.history:
if conv and len(conv) > 0 and conv[0]:
messages.append({'role': 'user', 'content': conv[0]})
if conv and len(conv) > 1 and conv[1]:
messages.append({'role': 'assistant', 'content': conv[1]})
input_ids = self.tokenizer.apply_chat_template(
conversation=messages,
tokenize=True,
add_generation_prompt=True,
return_tensors='pt'
)
return input_ids.to(self.gen_model.device)
@torch.inference_mode()
def stream_generate_answer(
self,
max_new_tokens=512,
temperature=0.7,
repetition_penalty=1.0,
context_len=2048
):
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
input_ids = self._get_chat_input()
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
generation_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
thread = Thread(target=self.gen_model.generate, kwargs=generation_kwargs)
thread.start()
yield from streamer
def add_corpus(self, files: Union[str, List[str]]):
"""Load document files."""
if isinstance(files, str):
files = [files]
for doc_file in files:
if doc_file.endswith('.pdf'):
corpus = self.extract_text_from_pdf(doc_file)
elif doc_file.endswith('.docx'):
corpus = self.extract_text_from_docx(doc_file)
elif doc_file.endswith('.md'):
corpus = self.extract_text_from_markdown(doc_file)
else:
corpus = self.extract_text_from_txt(doc_file)
full_text = '\n'.join(corpus)
chunks = self.text_splitter.split_text(full_text)
self.sim_model.add_corpus(chunks)
self.corpus_files = files
logger.debug(f"files: {files}, corpus size: {len(self.sim_model.corpus)}, top3: "
f"{list(self.sim_model.corpus.values())[:3]}")
@staticmethod
def get_file_hash(fpaths):
hasher = hashlib.md5()
target_file_data = bytes()
if isinstance(fpaths, str):
fpaths = [fpaths]
for fpath in fpaths:
with open(fpath, 'rb') as file:
chunk = file.read(1024 * 1024) # read only first 1MB
hasher.update(chunk)
target_file_data += chunk
hash_name = hasher.hexdigest()[:32]
return hash_name
@staticmethod
def extract_text_from_pdf(file_path: str):
"""Extract text content from a PDF file."""
import PyPDF2
contents = []
with open(file_path, 'rb') as f:
pdf_reader = PyPDF2.PdfReader(f)
for page in pdf_reader.pages:
page_text = page.extract_text().strip()
raw_text = [text.strip() for text in page_text.splitlines() if text.strip()]
new_text = ''
for text in raw_text:
if new_text:
new_text += ' '
new_text += text
if text[-1] in ['.', '!', '?', '。', '!', '?', '…', ';', ';', ':', ':', '”', '’', ')', '】', '》', '」',
'』', '〕', '〉', '》', '〗', '〞', '〟', '»', '"', "'", ')', ']', '}']:
contents.append(new_text)
new_text = ''
if new_text:
contents.append(new_text)
return contents
@staticmethod
def extract_text_from_txt(file_path: str):
"""Extract text content from a TXT file."""
with open(file_path, 'r', encoding='utf-8') as f:
contents = [text.strip() for text in f.readlines() if text.strip()]
return contents
@staticmethod
def extract_text_from_docx(file_path: str):
"""Extract text content from a DOCX file."""
import docx
document = docx.Document(file_path)
contents = [paragraph.text.strip() for paragraph in document.paragraphs if paragraph.text.strip()]
return contents
@staticmethod
def extract_text_from_markdown(file_path: str):
"""Extract text content from a Markdown file."""
import markdown
from bs4 import BeautifulSoup
with open(file_path, 'r', encoding='utf-8') as f:
markdown_text = f.read()
html = markdown.markdown(markdown_text)
soup = BeautifulSoup(html, 'html.parser')
contents = [text.strip() for text in soup.get_text().splitlines() if text.strip()]
return contents
@staticmethod
def _add_source_numbers(lst):
"""Add source numbers to a list of strings."""
return [f'[{idx + 1}]\t "{item}"' for idx, item in enumerate(lst)]
def _get_reranker_score(self, query: str, reference_results: List[str]):
"""Get reranker score."""
pairs = []
for reference in reference_results:
pairs.append([query, reference])
with torch.no_grad():
inputs = self.rerank_tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
inputs_on_device = {k: v.to(self.rerank_model.device) for k, v in inputs.items()}
scores = self.rerank_model(**inputs_on_device, return_dict=True).logits.view(-1, ).float()
return scores
def get_reference_results(self, query: str):
# Verificar si la consulta incluye un "Artículo X"
exact_match = None
if re.search(r'Artículo\s*\d+', query, re.IGNORECASE):
# Buscar el término específico "Artículo X" en el corpus de manera más precisa
term = re.search(r'Artículo\s*\d+', query, re.IGNORECASE).group()
# Buscar coincidencias exactas en el corpus
for corpus_id, content in self.sim_model.corpus.items():
# Agregar espacio o signo de puntuación alrededor de "term" para evitar coincidencias parciales
if re.search(r'\b' + re.escape(term) + r'\b', content, re.IGNORECASE):
exact_match = content
break
if exact_match:
# Si se encuentra una coincidencia exacta, devolverla como contexto
return [exact_match]
reference_results = []
sim_contents = self.sim_model.most_similar(query, topn=self.similarity_top_k)
# Get reference results from corpus
hit_chunk_dict = dict()
for c in sim_contents:
for id_score_dict in c:
corpus_id = id_score_dict['corpus_id']
hit_chunk = id_score_dict["corpus_doc"]
reference_results.append(hit_chunk)
hit_chunk_dict[corpus_id] = hit_chunk
if reference_results:
if self.rerank_model is not None:
# Rerank reference results
rerank_scores = self._get_reranker_score(query, reference_results)
logger.debug(f"rerank_scores: {rerank_scores}")
# Get rerank top k chunks
reference_results = [reference for reference, score in sorted(
zip(reference_results, rerank_scores), key=lambda x: x[1], reverse=True)][:self.rerank_top_k]
hit_chunk_dict = {corpus_id: hit_chunk for corpus_id, hit_chunk in hit_chunk_dict.items() if
hit_chunk in reference_results}
# Expand reference context chunk
if self.num_expand_context_chunk > 0:
new_reference_results = []
for corpus_id, hit_chunk in hit_chunk_dict.items():
expanded_reference = self.sim_model.corpus.get(corpus_id - 1, '') + hit_chunk
for i in range(self.num_expand_context_chunk):
expanded_reference += self.sim_model.corpus.get(corpus_id + i + 1, '')
new_reference_results.append(expanded_reference)
reference_results = new_reference_results
return reference_results
def predict_stream(
self,
query: str,
max_length: int = 512,
context_len: int = 2048,
temperature: float = 0.7,
):
"""Generate predictions stream."""
stop_str = self.tokenizer.eos_token if self.tokenizer.eos_token else "</s>"
if not self.enable_history:
self.history = []
if self.sim_model.corpus:
reference_results = self.get_reference_results(query)
if reference_results:
reference_results = self._add_source_numbers(reference_results)
context_str = '\n'.join(reference_results)[:]
else:
context_str = ''
prompt = PROMPT_TEMPLATE.format(context_str=context_str, query_str=query)
else:
prompt = query
logger.debug(f"prompt: {prompt}")
self.history.append([prompt, ''])
response = ""
for new_text in self.stream_generate_answer(
max_new_tokens=max_length,
temperature=temperature,
context_len=context_len,
):
if new_text != stop_str:
response += new_text
yield response
def predict(
self,
query: str,
max_length: int = 512,
context_len: int = 2048,
temperature: float = 0.7,
):
"""Query from corpus."""
reference_results = []
if not self.enable_history:
self.history = []
if self.sim_model.corpus:
reference_results = self.get_reference_results(query)
if reference_results:
reference_results = self._add_source_numbers(reference_results)
context_str = '\n'.join(reference_results)[:]
else:
context_str = ''
prompt = PROMPT_TEMPLATE.format(context_str=context_str, query_str=query)
else:
prompt = query
logger.debug(f"prompt: {prompt}")
self.history.append([prompt, ''])
response = ""
for new_text in self.stream_generate_answer(
max_new_tokens=max_length,
temperature=temperature,
context_len=context_len,
):
response += new_text
response = response.strip()
self.history[-1][1] = response
return response, reference_results
def query(self, query: str, **kwargs):
return self.predict(query, **kwargs)
def save_corpus_emb(self):
dir_name = self.get_file_hash(self.corpus_files)
save_dir = os.path.join(self.save_corpus_emb_dir, dir_name)
if hasattr(self.sim_model, 'save_corpus_embeddings'):
self.sim_model.save_corpus_embeddings(save_dir)
logger.debug(f"Saving corpus embeddings to {save_dir}")
return save_dir
def load_corpus_emb(self, emb_dir: str):
if hasattr(self.sim_model, 'load_corpus_embeddings'):
logger.debug(f"Loading corpus embeddings from {emb_dir}")
self.sim_model.load_corpus_embeddings(emb_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sim_model_name", type=str, default="shibing624/text2vec-base-multilingual")
parser.add_argument("--gen_model_type", type=str, default="auto")
parser.add_argument("--gen_model_name", type=str, default="Qwen/Qwen2-0.5B-Instruct")
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--rerank_model_name", type=str, default="")
parser.add_argument("--corpus_files", type=str, default="data/sample.pdf")
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--int4", action='store_true', help="use int4 quantization")
parser.add_argument("--int8", action='store_true', help="use int8 quantization")
parser.add_argument("--chunk_size", type=int, default=220)
parser.add_argument("--chunk_overlap", type=int, default=0)
parser.add_argument("--num_expand_context_chunk", type=int, default=1)
args = parser.parse_args()
print(args)
sim_model = BertSimilarity(model_name_or_path=args.sim_model_name, device=args.device)
m = Rag(
similarity_model=sim_model,
generate_model_type=args.gen_model_type,
generate_model_name_or_path=args.gen_model_name,
lora_model_name_or_path=args.lora_model,
device=args.device,
int4=args.int4,
int8=args.int8,
chunk_size=args.chunk_size,
chunk_overlap=args.chunk_overlap,
corpus_files=args.corpus_files.split(','),
num_expand_context_chunk=args.num_expand_context_chunk,
rerank_model_name_or_path=args.rerank_model_name,
)
r, refs = m.predict('自然语言中的非平行迁移是指什么?')
print(r, refs)