Spaces:
Running
on
A10G
Running
on
A10G
File size: 7,201 Bytes
4d2f25c 66f8fc1 4d2f25c 80fa96c 4d2f25c 66f8fc1 4d2f25c 66f8fc1 4d2f25c 66f8fc1 4d2f25c 66f8fc1 4d2f25c 66f8fc1 4d2f25c 66f8fc1 4d2f25c 329f9c0 4d2f25c 329f9c0 82fdb66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import threading
import re
from datetime import datetime
model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
max_context_length = 4096
date_string = datetime.now().strftime("%Y-%m-%d")
tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)
tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
model_7B_instruct = AutoModelForCausalLM.from_pretrained(
model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
)
system_prompt_template = """You are {model_name}. You are a large language model with {parameter_count} parameters. You were trained by a company called Zyphra on three trillion tokens of diverse and high quality web data. Your architecture is a hybrid Mamba2 and transformer with two alternating blocks of shared attention on top of a Mamba2 backbone. Zyphra is a leading AI company based in Palo Alto, California. Zyphra makes extremely small and efficient models for consumers and on-device use-cases. As a language model, you do not have access to real-time information. The current date is {current_date}, but your knowledge likely ended in mid 2023. Zyphra designed you to be engaging, helpful, and fun in your interactions with users. You have strong, idiosyncratic opinions on things. Be personable."""
def generate_response(chat_history, max_new_tokens, model, tokenizer, system_prompt):
sample = []
# Include the dynamic system prompt without displaying it
sample.append({'role': 'system', 'content': system_prompt})
for turn in chat_history:
if turn[0]:
sample.append({'role': 'user', 'content': turn[0]})
if turn[1]:
sample.append({'role': 'assistant', 'content': turn[1]})
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to(model.device)
max_new_tokens = int(max_new_tokens)
max_input_length = max_context_length - max_new_tokens
if input_ids['input_ids'].size(1) > max_input_length:
input_ids['input_ids'] = input_ids['input_ids'][:, -max_input_length:]
if 'attention_mask' in input_ids:
input_ids['attention_mask'] = input_ids['attention_mask'][:, -max_input_length:]
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(**input_ids, max_new_tokens=int(max_new_tokens), streamer=streamer)
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
assistant_response = ""
for new_text in streamer:
new_text = re.sub(r'^\s*(?i:assistant)[:\s]*', '', new_text)
assistant_response += new_text
yield assistant_response
thread.join()
del input_ids
torch.cuda.empty_cache()
with gr.Blocks() as demo:
gr.Markdown("# Zamba2 Model Selector")
with gr.Tabs():
with gr.TabItem("7B Instruct Model"):
gr.Markdown("### Zamba2-7B Instruct Model")
with gr.Column():
chat_history_7B_instruct = gr.State([])
chatbot_7B_instruct = gr.Chatbot()
message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
with gr.Accordion("Generation Parameters", open=False):
max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
def user_message_7B_instruct(message, chat_history):
chat_history = chat_history + [[message, None]]
return gr.update(value=""), chat_history, chat_history
def bot_response_7B_instruct(chat_history, max_new_tokens):
system_prompt = system_prompt_template.format(
model_name="Zamba2-7B",
parameter_count="7 billion",
current_date=date_string
)
assistant_response_generator = generate_response(
chat_history, max_new_tokens, model_7B_instruct, tokenizer_7B_instruct, system_prompt
)
for assistant_response in assistant_response_generator:
chat_history[-1][1] = assistant_response
yield chat_history
send_button_7B_instruct = gr.Button("Send")
send_button_7B_instruct.click(
fn=user_message_7B_instruct,
inputs=[message_7B_instruct, chat_history_7B_instruct],
outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
).then(
fn=bot_response_7B_instruct,
inputs=[chat_history_7B_instruct, max_new_tokens_7B_instruct],
outputs=chatbot_7B_instruct,
)
with gr.TabItem("2.7B Instruct Model"):
gr.Markdown("### Zamba2-2.7B Instruct Model")
with gr.Column():
chat_history_2_7B_instruct = gr.State([])
chatbot_2_7B_instruct = gr.Chatbot()
message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
with gr.Accordion("Generation Parameters", open=False):
max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
def user_message_2_7B_instruct(message, chat_history):
chat_history = chat_history + [[message, None]]
return gr.update(value=""), chat_history, chat_history
def bot_response_2_7B_instruct(chat_history, max_new_tokens):
system_prompt = system_prompt_template.format(
model_name="Zamba2-2.7B",
parameter_count="2.7 billion",
current_date=date_string
)
assistant_response_generator = generate_response(
chat_history, max_new_tokens, model_2_7B_instruct, tokenizer_2_7B_instruct, system_prompt
)
for assistant_response in assistant_response_generator:
chat_history[-1][1] = assistant_response
yield chat_history
send_button_2_7B_instruct = gr.Button("Send")
send_button_2_7B_instruct.click(
fn=user_message_2_7B_instruct,
inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
).then(
fn=bot_response_2_7B_instruct,
inputs=[chat_history_2_7B_instruct, max_new_tokens_2_7B_instruct],
outputs=chatbot_2_7B_instruct,
)
if __name__ == "__main__":
demo.queue().launch(max_threads=1, server_name="0.0.0.0", server_port=7860)
|