Spaces:
Running
Running
rename memory usage to peak memory
Browse files
src/components/filters.py
CHANGED
@@ -52,6 +52,7 @@ def render_column_visibility() -> Set[str]:
|
|
52 |
"Platform",
|
53 |
"CPU Cores",
|
54 |
"Total Memory (GB)",
|
|
|
55 |
"Memory Usage (%)",
|
56 |
],
|
57 |
"Benchmark Info": [
|
|
|
52 |
"Platform",
|
53 |
"CPU Cores",
|
54 |
"Total Memory (GB)",
|
55 |
+
"Peak Memory (GB)",
|
56 |
"Memory Usage (%)",
|
57 |
],
|
58 |
"Benchmark Info": [
|
src/components/visualizations.py
CHANGED
@@ -12,7 +12,7 @@ def create_performance_plot(
|
|
12 |
return None
|
13 |
|
14 |
if hover_data is None:
|
15 |
-
hover_data = ["CPU Cores", "Memory
|
16 |
|
17 |
fig = px.bar(
|
18 |
df,
|
@@ -126,8 +126,8 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
126 |
# Include memory metrics if available
|
127 |
if "Memory Usage (%)" in filtered_df.columns:
|
128 |
agg_dict["Memory Usage (%)"] = "mean"
|
129 |
-
if "Memory
|
130 |
-
agg_dict["Memory
|
131 |
|
132 |
# Include device info if available
|
133 |
if "CPU Cores" in filtered_df.columns:
|
@@ -158,7 +158,7 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
158 |
"Token Generation": "TG Avg (t/s)",
|
159 |
# "Token Generation (std)": "TG Std (t/s)",
|
160 |
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
161 |
-
"Memory
|
162 |
"PP Config (first)": "PP Config",
|
163 |
"TG Config (first)": "TG Config",
|
164 |
"Model Size (first)": "Model Size",
|
@@ -178,8 +178,8 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
|
|
178 |
hover_data = []
|
179 |
if "CPU Cores" in plot_group.columns:
|
180 |
hover_data.append("CPU Cores")
|
181 |
-
if "Memory
|
182 |
-
hover_data.append("Memory
|
183 |
|
184 |
# Create plots
|
185 |
col1, col2 = st.columns(2)
|
@@ -228,7 +228,7 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
228 |
"Prompt Processing": ["mean", "std"],
|
229 |
"Token Generation": ["mean", "std"],
|
230 |
# "Memory Usage (%)": "mean",
|
231 |
-
"Memory
|
232 |
"Total Memory (GB)": "first", # For a given model, device, platform, mem should be the same.
|
233 |
"CPU Cores": "first", # For a given model, device, platform, cpu cores should be the same.
|
234 |
"Model Size": "first", # model size should be the same for all.
|
@@ -288,7 +288,6 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
288 |
by=sort_cols, ascending=[False] + [True] * (len(sort_cols) - 1)
|
289 |
)
|
290 |
|
291 |
-
|
292 |
# Rename columns for display
|
293 |
column_mapping = {
|
294 |
"Prompt Processing (mean)": "PP Avg (t/s)",
|
@@ -297,7 +296,7 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
297 |
"Token Generation (mean)": "TG Avg (t/s)",
|
298 |
"Token Generation (std)": "TG Std (t/s)",
|
299 |
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
300 |
-
"Memory
|
301 |
"PP Config (first)": "PP Config",
|
302 |
"TG Config (first)": "TG Config",
|
303 |
"Model Size (first)": "Model Size",
|
@@ -323,6 +322,7 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
|
|
323 |
"Platform": "Platform",
|
324 |
"CPU Cores": "CPU Cores",
|
325 |
"Total Memory (GB)": "Total Memory (GB)",
|
|
|
326 |
"Memory Usage (%)": "Memory Usage (%)",
|
327 |
"PP Config": "PP Config",
|
328 |
"TG Config": "TG Config",
|
|
|
12 |
return None
|
13 |
|
14 |
if hover_data is None:
|
15 |
+
hover_data = ["CPU Cores", "Peak Memory (GB)"]
|
16 |
|
17 |
fig = px.bar(
|
18 |
df,
|
|
|
126 |
# Include memory metrics if available
|
127 |
if "Memory Usage (%)" in filtered_df.columns:
|
128 |
agg_dict["Memory Usage (%)"] = "mean"
|
129 |
+
if "Peak Memory (GB)" in filtered_df.columns:
|
130 |
+
agg_dict["Peak Memory (GB)"] = "mean"
|
131 |
|
132 |
# Include device info if available
|
133 |
if "CPU Cores" in filtered_df.columns:
|
|
|
158 |
"Token Generation": "TG Avg (t/s)",
|
159 |
# "Token Generation (std)": "TG Std (t/s)",
|
160 |
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
161 |
+
"Peak Memory (GB) (mean)": "Peak Memory (GB)",
|
162 |
"PP Config (first)": "PP Config",
|
163 |
"TG Config (first)": "TG Config",
|
164 |
"Model Size (first)": "Model Size",
|
|
|
178 |
hover_data = []
|
179 |
if "CPU Cores" in plot_group.columns:
|
180 |
hover_data.append("CPU Cores")
|
181 |
+
if "Peak Memory (GB)" in plot_group.columns:
|
182 |
+
hover_data.append("Peak Memory (GB)")
|
183 |
|
184 |
# Create plots
|
185 |
col1, col2 = st.columns(2)
|
|
|
228 |
"Prompt Processing": ["mean", "std"],
|
229 |
"Token Generation": ["mean", "std"],
|
230 |
# "Memory Usage (%)": "mean",
|
231 |
+
"Peak Memory (GB)": "mean", # For a given model, device, platform, mem should be the same.
|
232 |
"Total Memory (GB)": "first", # For a given model, device, platform, mem should be the same.
|
233 |
"CPU Cores": "first", # For a given model, device, platform, cpu cores should be the same.
|
234 |
"Model Size": "first", # model size should be the same for all.
|
|
|
288 |
by=sort_cols, ascending=[False] + [True] * (len(sort_cols) - 1)
|
289 |
)
|
290 |
|
|
|
291 |
# Rename columns for display
|
292 |
column_mapping = {
|
293 |
"Prompt Processing (mean)": "PP Avg (t/s)",
|
|
|
296 |
"Token Generation (mean)": "TG Avg (t/s)",
|
297 |
"Token Generation (std)": "TG Std (t/s)",
|
298 |
"Memory Usage (%) (mean)": "Memory Usage (%)",
|
299 |
+
"Peak Memory (GB) (mean)": "Peak Memory (GB)",
|
300 |
"PP Config (first)": "PP Config",
|
301 |
"TG Config (first)": "TG Config",
|
302 |
"Model Size (first)": "Model Size",
|
|
|
322 |
"Platform": "Platform",
|
323 |
"CPU Cores": "CPU Cores",
|
324 |
"Total Memory (GB)": "Total Memory (GB)",
|
325 |
+
"Peak Memory (GB)": "Peak Memory (GB)",
|
326 |
"Memory Usage (%)": "Memory Usage (%)",
|
327 |
"PP Config": "PP Config",
|
328 |
"TG Config": "TG Config",
|
src/services/firebase.py
CHANGED
@@ -79,7 +79,7 @@ def format_leaderboard_data(submissions: List[dict]) -> pd.DataFrame:
|
|
79 |
"Memory Usage (%)": benchmark_result.get("peakMemoryUsage", {}).get(
|
80 |
"percentage"
|
81 |
),
|
82 |
-
"Memory
|
83 |
round(
|
84 |
benchmark_result.get("peakMemoryUsage", {}).get("used", 0)
|
85 |
/ (1024**3),
|
|
|
79 |
"Memory Usage (%)": benchmark_result.get("peakMemoryUsage", {}).get(
|
80 |
"percentage"
|
81 |
),
|
82 |
+
"Peak Memory (GB)": (
|
83 |
round(
|
84 |
benchmark_result.get("peakMemoryUsage", {}).get("used", 0)
|
85 |
/ (1024**3),
|