agh123 commited on
Commit
b748cf7
·
1 Parent(s): 6154159

rename memory usage to peak memory

Browse files
src/components/filters.py CHANGED
@@ -52,6 +52,7 @@ def render_column_visibility() -> Set[str]:
52
  "Platform",
53
  "CPU Cores",
54
  "Total Memory (GB)",
 
55
  "Memory Usage (%)",
56
  ],
57
  "Benchmark Info": [
 
52
  "Platform",
53
  "CPU Cores",
54
  "Total Memory (GB)",
55
+ "Peak Memory (GB)",
56
  "Memory Usage (%)",
57
  ],
58
  "Benchmark Info": [
src/components/visualizations.py CHANGED
@@ -12,7 +12,7 @@ def create_performance_plot(
12
  return None
13
 
14
  if hover_data is None:
15
- hover_data = ["CPU Cores", "Memory Usage (GB)"]
16
 
17
  fig = px.bar(
18
  df,
@@ -126,8 +126,8 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
126
  # Include memory metrics if available
127
  if "Memory Usage (%)" in filtered_df.columns:
128
  agg_dict["Memory Usage (%)"] = "mean"
129
- if "Memory Usage (GB)" in filtered_df.columns:
130
- agg_dict["Memory Usage (GB)"] = "mean"
131
 
132
  # Include device info if available
133
  if "CPU Cores" in filtered_df.columns:
@@ -158,7 +158,7 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
158
  "Token Generation": "TG Avg (t/s)",
159
  # "Token Generation (std)": "TG Std (t/s)",
160
  "Memory Usage (%) (mean)": "Memory Usage (%)",
161
- "Memory Usage (GB) (mean)": "Memory Usage (GB)",
162
  "PP Config (first)": "PP Config",
163
  "TG Config (first)": "TG Config",
164
  "Model Size (first)": "Model Size",
@@ -178,8 +178,8 @@ def render_performance_plots(df: pd.DataFrame, filters: Dict):
178
  hover_data = []
179
  if "CPU Cores" in plot_group.columns:
180
  hover_data.append("CPU Cores")
181
- if "Memory Usage (GB)" in plot_group.columns:
182
- hover_data.append("Memory Usage (GB)")
183
 
184
  # Create plots
185
  col1, col2 = st.columns(2)
@@ -228,7 +228,7 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
228
  "Prompt Processing": ["mean", "std"],
229
  "Token Generation": ["mean", "std"],
230
  # "Memory Usage (%)": "mean",
231
- "Memory Usage (GB)": "mean", # For a given model, device, platform, mem should be the same.
232
  "Total Memory (GB)": "first", # For a given model, device, platform, mem should be the same.
233
  "CPU Cores": "first", # For a given model, device, platform, cpu cores should be the same.
234
  "Model Size": "first", # model size should be the same for all.
@@ -288,7 +288,6 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
288
  by=sort_cols, ascending=[False] + [True] * (len(sort_cols) - 1)
289
  )
290
 
291
-
292
  # Rename columns for display
293
  column_mapping = {
294
  "Prompt Processing (mean)": "PP Avg (t/s)",
@@ -297,7 +296,7 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
297
  "Token Generation (mean)": "TG Avg (t/s)",
298
  "Token Generation (std)": "TG Std (t/s)",
299
  "Memory Usage (%) (mean)": "Memory Usage (%)",
300
- "Memory Usage (GB) (mean)": "Memory Usage (GB)",
301
  "PP Config (first)": "PP Config",
302
  "TG Config (first)": "TG Config",
303
  "Model Size (first)": "Model Size",
@@ -323,6 +322,7 @@ def render_leaderboard_table(df: pd.DataFrame, filters: Dict):
323
  "Platform": "Platform",
324
  "CPU Cores": "CPU Cores",
325
  "Total Memory (GB)": "Total Memory (GB)",
 
326
  "Memory Usage (%)": "Memory Usage (%)",
327
  "PP Config": "PP Config",
328
  "TG Config": "TG Config",
 
12
  return None
13
 
14
  if hover_data is None:
15
+ hover_data = ["CPU Cores", "Peak Memory (GB)"]
16
 
17
  fig = px.bar(
18
  df,
 
126
  # Include memory metrics if available
127
  if "Memory Usage (%)" in filtered_df.columns:
128
  agg_dict["Memory Usage (%)"] = "mean"
129
+ if "Peak Memory (GB)" in filtered_df.columns:
130
+ agg_dict["Peak Memory (GB)"] = "mean"
131
 
132
  # Include device info if available
133
  if "CPU Cores" in filtered_df.columns:
 
158
  "Token Generation": "TG Avg (t/s)",
159
  # "Token Generation (std)": "TG Std (t/s)",
160
  "Memory Usage (%) (mean)": "Memory Usage (%)",
161
+ "Peak Memory (GB) (mean)": "Peak Memory (GB)",
162
  "PP Config (first)": "PP Config",
163
  "TG Config (first)": "TG Config",
164
  "Model Size (first)": "Model Size",
 
178
  hover_data = []
179
  if "CPU Cores" in plot_group.columns:
180
  hover_data.append("CPU Cores")
181
+ if "Peak Memory (GB)" in plot_group.columns:
182
+ hover_data.append("Peak Memory (GB)")
183
 
184
  # Create plots
185
  col1, col2 = st.columns(2)
 
228
  "Prompt Processing": ["mean", "std"],
229
  "Token Generation": ["mean", "std"],
230
  # "Memory Usage (%)": "mean",
231
+ "Peak Memory (GB)": "mean", # For a given model, device, platform, mem should be the same.
232
  "Total Memory (GB)": "first", # For a given model, device, platform, mem should be the same.
233
  "CPU Cores": "first", # For a given model, device, platform, cpu cores should be the same.
234
  "Model Size": "first", # model size should be the same for all.
 
288
  by=sort_cols, ascending=[False] + [True] * (len(sort_cols) - 1)
289
  )
290
 
 
291
  # Rename columns for display
292
  column_mapping = {
293
  "Prompt Processing (mean)": "PP Avg (t/s)",
 
296
  "Token Generation (mean)": "TG Avg (t/s)",
297
  "Token Generation (std)": "TG Std (t/s)",
298
  "Memory Usage (%) (mean)": "Memory Usage (%)",
299
+ "Peak Memory (GB) (mean)": "Peak Memory (GB)",
300
  "PP Config (first)": "PP Config",
301
  "TG Config (first)": "TG Config",
302
  "Model Size (first)": "Model Size",
 
322
  "Platform": "Platform",
323
  "CPU Cores": "CPU Cores",
324
  "Total Memory (GB)": "Total Memory (GB)",
325
+ "Peak Memory (GB)": "Peak Memory (GB)",
326
  "Memory Usage (%)": "Memory Usage (%)",
327
  "PP Config": "PP Config",
328
  "TG Config": "TG Config",
src/services/firebase.py CHANGED
@@ -79,7 +79,7 @@ def format_leaderboard_data(submissions: List[dict]) -> pd.DataFrame:
79
  "Memory Usage (%)": benchmark_result.get("peakMemoryUsage", {}).get(
80
  "percentage"
81
  ),
82
- "Memory Usage (GB)": (
83
  round(
84
  benchmark_result.get("peakMemoryUsage", {}).get("used", 0)
85
  / (1024**3),
 
79
  "Memory Usage (%)": benchmark_result.get("peakMemoryUsage", {}).get(
80
  "percentage"
81
  ),
82
+ "Peak Memory (GB)": (
83
  round(
84
  benchmark_result.get("peakMemoryUsage", {}).get("used", 0)
85
  / (1024**3),