Update app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,61 @@
|
|
1 |
-
import
|
2 |
-
from PIL import Image
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
-
from moviepy.editor import ImageSequenceClip
|
6 |
from transformers import MusicgenForConditionalGeneration, AutoProcessor
|
7 |
-
|
8 |
-
import ffmpeg
|
9 |
-
from diffusers import I2VGenXLPipeline
|
10 |
-
def generate_video(image, prompt, negative_prompt, video_length):
|
11 |
-
generator = torch.manual_seed(8888)
|
12 |
-
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
13 |
-
print(f"Using device: {device}")
|
14 |
-
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float32)
|
15 |
-
pipeline.to(device)
|
16 |
-
|
17 |
-
frames = []
|
18 |
-
total_frames = video_length * 20 # Assuming 20 frames per second
|
19 |
-
|
20 |
-
# Generate frames with progress tracking
|
21 |
-
for i in range(total_frames):
|
22 |
-
frame = pipeline(
|
23 |
-
prompt=prompt,
|
24 |
-
image=image,
|
25 |
-
num_inference_steps=2,
|
26 |
-
negative_prompt=negative_prompt,
|
27 |
-
guidance_scale=9.0,
|
28 |
-
generator=generator,
|
29 |
-
num_frames=1
|
30 |
-
).frames[0]
|
31 |
-
frames.append(frame)
|
32 |
-
st.progress((i + 1) / total_frames) # Update progress bar
|
33 |
-
|
34 |
-
return frames
|
35 |
-
|
36 |
-
def export_frames_to_video(frames, output_file):
|
37 |
-
frames_np = [np.array(frame) for frame in frames]
|
38 |
-
clip = ImageSequenceClip(frames_np, fps=30)
|
39 |
-
clip.write_videofile(output_file, codec='libx264', audio=False)
|
40 |
|
41 |
def generate_music(prompt, unconditional=False):
|
42 |
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
43 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
44 |
model.to(device)
|
45 |
|
46 |
-
#
|
47 |
-
st.progress(0) # Initialize progress bar
|
48 |
if unconditional:
|
49 |
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
|
50 |
audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
|
51 |
else:
|
52 |
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
53 |
-
inputs = processor(
|
54 |
-
|
55 |
-
padding=True,
|
56 |
-
return_tensors="pt",
|
57 |
-
)
|
58 |
-
# Simulate progress by updating the progress bar
|
59 |
-
for i in range(1, 6): # Assuming 5 steps for demonstration
|
60 |
-
audio_values = model.generate(**inputs.to(device), do_sample=True, guidance_scale=3, max_new_tokens=256)
|
61 |
-
st.progress(i / 5) # Update progress bar
|
62 |
|
63 |
sampling_rate = model.config.audio_encoder.sampling_rate
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
st.write("Combining audio and video...")
|
105 |
-
combine_audio_video("musicgen_out.wav", "output_video.mp4", "combined_output.mp4")
|
106 |
-
st.video("combined_output.mp4")
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
|
|
4 |
from transformers import MusicgenForConditionalGeneration, AutoProcessor
|
5 |
+
import scipy.io.wavfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def generate_music(prompt, unconditional=False):
|
8 |
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
model.to(device)
|
11 |
|
12 |
+
# Generate music
|
|
|
13 |
if unconditional:
|
14 |
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
|
15 |
audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
|
16 |
else:
|
17 |
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
18 |
+
inputs = processor(text=prompt, padding=True, return_tensors="pt")
|
19 |
+
audio_values = model.generate(**inputs.to(device), do_sample=True, guidance_scale=3, max_new_tokens=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
sampling_rate = model.config.audio_encoder.sampling_rate
|
22 |
+
audio_file = "musicgen_out.wav"
|
23 |
+
|
24 |
+
# Ensure audio_values is 1D and scale if necessary
|
25 |
+
audio_data = audio_values[0].cpu().numpy()
|
26 |
+
|
27 |
+
# Check if audio_data is in the correct format
|
28 |
+
if audio_data.ndim > 1:
|
29 |
+
audio_data = audio_data[0] # Take the first channel if stereo
|
30 |
+
|
31 |
+
# Scale audio data to 16-bit PCM format
|
32 |
+
audio_data = np.clip(audio_data, -1.0, 1.0) # Ensure values are in the range [-1, 1]
|
33 |
+
audio_data = (audio_data * 32767).astype(np.int16) # Scale to int16
|
34 |
+
|
35 |
+
# Save the generated audio
|
36 |
+
scipy.io.wavfile.write(audio_file, sampling_rate, audio_data)
|
37 |
+
|
38 |
+
return audio_file
|
39 |
+
|
40 |
+
def interface(prompt, unconditional):
|
41 |
+
audio_file = generate_music(prompt, unconditional)
|
42 |
+
return audio_file
|
43 |
+
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# AI-Powered Music Generation")
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
prompt_input = gr.Textbox(label="Enter the Music Prompt")
|
49 |
+
unconditional_checkbox = gr.Checkbox(label="Generate Unconditional Music")
|
50 |
+
|
51 |
+
generate_button = gr.Button("Generate Music")
|
52 |
+
output_audio = gr.Audio(label="Output Music")
|
53 |
+
|
54 |
+
generate_button.click(
|
55 |
+
interface,
|
56 |
+
inputs=[prompt_input, unconditional_checkbox],
|
57 |
+
outputs=output_audio,
|
58 |
+
show_progress=True
|
59 |
+
)
|
60 |
+
|
61 |
+
demo.launch(share=True)
|
|
|
|
|
|