import gradio as gr from transformers import pipeline # 加载预训练的摘要模型 "shleifer/distilbart-cnn-12-6" summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") # 定义摘要函数 def summarize(input_text): # 使用模型生成摘要 summary = summarizer(input_text, max_length=130, min_length=30, do_sample=False) return summary[0]['summary_text'] def summarize_with_error_handling(input_text): try: return summarize(input_text) except Exception as e: return f"An error occurred: {str(e)}" # 使用 Gradio 构建前端 gr.close_all() # 关闭其他可能在运行的 Gradio 应用 demo = gr.Interface(fn=summarize_with_error_handling, inputs="text", outputs="text", title="Text Summarization with distilbart-cnn-12-6") # 启动 Gradio 应用 demo.launch()