Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_community.llms import CTransformers
|
3 |
+
|
4 |
+
st.title("Generating Response with HuggingFace Models")
|
5 |
+
st.markdown("## Model: `marella/gpt-2-ggml`")
|
6 |
+
|
7 |
+
def get_response(question: str) -> str:
|
8 |
+
"""
|
9 |
+
This function takes a user input question and returns the response from the LLM model.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
question (str): The user input question.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: The response from the LLM model.
|
16 |
+
|
17 |
+
"""
|
18 |
+
llm = CTransformers(model="marella/gpt-2-ggml")
|
19 |
+
response = llm.invoke(question)
|
20 |
+
st.write(response)
|
21 |
+
return response
|
22 |
+
|
23 |
+
user_input = st.text_area("Enter your query here...")
|
24 |
+
|
25 |
+
if st.button("Get Response") and user_input:
|
26 |
+
with st.spinner("Generating Response..."):
|
27 |
+
answer = get_response(user_input)
|
28 |
+
if answer is not None:
|
29 |
+
st.success('Great! Response generated successfully')
|
30 |
+
st.write(answer)
|