Spaces:
Runtime error
Runtime error
Upload denoiseCIFAR100.py
Browse files- denoiseCIFAR100.py +110 -0
denoiseCIFAR100.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
pytorch lightning module for denoising CIFAR100
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
#import functions
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from torch import nn
|
10 |
+
import torch
|
11 |
+
import torchvision
|
12 |
+
from einops import rearrange, reduce
|
13 |
+
from argparse import ArgumentParser
|
14 |
+
from pytorch_lightning import LightningModule, Trainer, Callback
|
15 |
+
from pytorch_lightning.loggers import WandbLogger
|
16 |
+
from torch.optim import Adam
|
17 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
18 |
+
from encoder import Encoder
|
19 |
+
from decoder import Decoder
|
20 |
+
|
21 |
+
|
22 |
+
class DenoiseCIFAR100Model(LightningModule):
|
23 |
+
|
24 |
+
def __init__(self, feature_dim=256, lr=0.001, batch_size=64,
|
25 |
+
num_workers=2, max_epochs=30, **kwargs):
|
26 |
+
super().__init__()
|
27 |
+
self.save_hyperparameters()
|
28 |
+
self.encoder = Encoder(feature_dim=feature_dim)
|
29 |
+
self.decoder = Decoder(feature_dim=feature_dim)
|
30 |
+
self.loss = nn.MSELoss()
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
h = self.encoder(x)
|
34 |
+
x_tilde = self.decoder(h)
|
35 |
+
return x_tilde
|
36 |
+
|
37 |
+
# this is called during fit()
|
38 |
+
def training_step(self, batch, batch_idx):
|
39 |
+
x_in, x = batch
|
40 |
+
x_tilde = self.forward(x_in)
|
41 |
+
loss = self.loss(x_tilde, x)
|
42 |
+
return {"loss": loss}
|
43 |
+
|
44 |
+
# calls to self.log() are recorded in wandb
|
45 |
+
def training_epoch_end(self, outputs):
|
46 |
+
avg_loss = torch.stack([x["loss"] for x in outputs]).mean()
|
47 |
+
self.log("train_loss", avg_loss, on_epoch=True)
|
48 |
+
|
49 |
+
# this is called at the end of an epoch
|
50 |
+
def test_step(self, batch, batch_idx):
|
51 |
+
x_in, x = batch
|
52 |
+
x_tilde = self.forward(x_in)
|
53 |
+
loss = self.loss(x_tilde, x)
|
54 |
+
return {"x_in" : x_in, "x": x, "x_tilde" : x_tilde, "test_loss" : loss,}
|
55 |
+
|
56 |
+
# this is called at the end of all epochs
|
57 |
+
def test_epoch_end(self, outputs):
|
58 |
+
avg_loss = torch.stack([x["test_loss"] for x in outputs]).mean()
|
59 |
+
self.log("test_loss", avg_loss, on_epoch=True, prog_bar=True)
|
60 |
+
|
61 |
+
# validation is the same as test
|
62 |
+
def validation_step(self, batch, batch_idx):
|
63 |
+
return self.test_step(batch, batch_idx)
|
64 |
+
|
65 |
+
def validation_epoch_end(self, outputs):
|
66 |
+
return self.test_epoch_end(outputs)
|
67 |
+
|
68 |
+
# we use Adam optimizer
|
69 |
+
def configure_optimizers(self):
|
70 |
+
optimizer = Adam(self.parameters(), lr=self.hparams.lr)
|
71 |
+
# this decays the learning rate to 0 after max_epochs using cosine annealing
|
72 |
+
scheduler = CosineAnnealingLR(optimizer, T_max=self.hparams.max_epochs)
|
73 |
+
return [optimizer], [scheduler],
|
74 |
+
|
75 |
+
# this is called after model instatiation to initiliaze the datasets and dataloaders
|
76 |
+
def setup(self, stage=None):
|
77 |
+
self.train_dataloader()
|
78 |
+
self.test_dataloader()
|
79 |
+
|
80 |
+
# build train and test dataloaders using MNIST dataset
|
81 |
+
# we use simple ToTensor transform
|
82 |
+
def train_dataloader(self):
|
83 |
+
return torch.utils.data.DataLoader(
|
84 |
+
torchvision.datasets.CIFAR100(
|
85 |
+
"./data", train=True, download=True,
|
86 |
+
transform=torchvision.transforms.ToTensor()
|
87 |
+
),
|
88 |
+
batch_size=self.hparams.batch_size,
|
89 |
+
shuffle=True,
|
90 |
+
num_workers=self.hparams.num_workers,
|
91 |
+
pin_memory=True,
|
92 |
+
collate_fn=noise_collate_fn
|
93 |
+
)
|
94 |
+
|
95 |
+
def test_dataloader(self):
|
96 |
+
return torch.utils.data.DataLoader(
|
97 |
+
torchvision.datasets.CIFAR100(
|
98 |
+
"./data", train=False, download=True,
|
99 |
+
transform=torchvision.transforms.ToTensor()
|
100 |
+
),
|
101 |
+
batch_size=self.hparams.batch_size,
|
102 |
+
shuffle=False,
|
103 |
+
num_workers=self.hparams.num_workers,
|
104 |
+
pin_memory=True,
|
105 |
+
collate_fn=noise_collate_fn
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def val_dataloader(self):
|
110 |
+
return self.test_dataloader()
|