Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
hugging face app.py file
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
#import functions
|
7 |
+
|
8 |
+
import matplotlib.pylab as plt
|
9 |
+
import PIL.Image as Image
|
10 |
+
import gradio as gr
|
11 |
+
import torch
|
12 |
+
import torchvision
|
13 |
+
from torch import nn
|
14 |
+
from einops import rearrange, reduce
|
15 |
+
from pytorch_lightning import LightningModule, Trainer, Callback
|
16 |
+
from pytorch_lightning.loggers import WandbLogger
|
17 |
+
from torch.optim import Adam
|
18 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
19 |
+
from denoiseCIFAR100 import DenoiseCIFAR100Model
|
20 |
+
from torchvision import transforms
|
21 |
+
from PIL import Image
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
modelcheck = DenoiseCIFAR100Model.load_from_checkpoint("./autoencoder_model.ckpt")
|
27 |
+
modelcheck=modelcheck.eval()
|
28 |
+
|
29 |
+
def denoise(image):
|
30 |
+
in_im=tinp = transforms.ToTensor()(image).unsqueeze(0)
|
31 |
+
with torch.no_grad():
|
32 |
+
out_im = modelcheck(in_im)
|
33 |
+
|
34 |
+
out = out_im[0].permute(1, 2, 0)
|
35 |
+
out = out.numpy()
|
36 |
+
im = Image.fromarray((out * 255).astype(np.uint8))
|
37 |
+
im.save("./output.jpeg")
|
38 |
+
return "./output.jpeg"
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
iface = gr.Interface(denoise, inputs=gr.inputs.Image(shape=(32,32), image_mode="RGB", type="numpy",label="Input"),
|
43 |
+
outputs=gr.outputs.Image(type="file",label="Output"),
|
44 |
+
examples=["panda.jpeg","outside.jpeg"],
|
45 |
+
live=False,layout="horizontal", interpretation=None,
|
46 |
+
title="CIFAR100 Denoising",
|
47 |
+
#description=description,
|
48 |
+
#article=article
|
49 |
+
)
|
50 |
+
iface.launch()
|