""" hugging face app.py file """ #import functions import matplotlib.pylab as plt import PIL.Image as Image import gradio as gr import torch import torchvision from torch import nn from einops import rearrange, reduce from pytorch_lightning import LightningModule, Trainer, Callback from pytorch_lightning.loggers import WandbLogger from torch.optim import Adam from torch.optim.lr_scheduler import CosineAnnealingLR from denoiseCIFAR100 import DenoiseCIFAR100Model from torchvision import transforms from PIL import Image import numpy as np modelcheck = DenoiseCIFAR100Model.load_from_checkpoint("./autoencoder_model.ckpt") modelcheck=modelcheck.eval() def denoise(image): in_im=tinp = transforms.ToTensor()(image).unsqueeze(0) with torch.no_grad(): out_im = modelcheck(in_im) out = out_im[0].permute(1, 2, 0) out = out.numpy() im = Image.fromarray((out * 255).astype(np.uint8)) im.save("./output.jpeg") return "./output.jpeg" iface = gr.Interface(denoise, inputs=gr.inputs.Image(shape=(32,32), image_mode="RGB", type="numpy",label="Input"), outputs=gr.outputs.Image(type="file",label="Output"), examples=["panda.jpeg","outside.jpeg"], live=False,layout="horizontal", interpretation=None, title="CIFAR100 Denoising", #description=description, #article=article ) iface.launch()