""" decoder """ #import functions import numpy as np from torch import nn import torch import torchvision from einops import rearrange, reduce from argparse import ArgumentParser from pytorch_lightning import LightningModule, Trainer, Callback from pytorch_lightning.loggers import WandbLogger from torch.optim import Adam from torch.optim.lr_scheduler import CosineAnnealingLR class Decoder(nn.Module): def __init__(self, kernel_size=3, n_filters=64, feature_dim=1024, output_size=32, output_channels=3): super().__init__() self.init_size = output_size // 2**2 self.fc1 = nn.Linear(feature_dim, self.init_size**2 * n_filters) # output size of conv2dtranspose is (h-1)*2 + 1 + (kernel_size - 1) self.conv1 = nn.ConvTranspose2d(n_filters, n_filters//2, kernel_size=kernel_size, stride=2, padding=1) self.conv2 = nn.ConvTranspose2d(n_filters//2, n_filters//4, kernel_size=kernel_size, stride=2, padding=1) self.conv3 = nn.ConvTranspose2d(n_filters//4, n_filters//4, kernel_size=kernel_size, padding=1) self.conv4 = nn.ConvTranspose2d(n_filters//4, output_channels, kernel_size=kernel_size+1) def forward(self, x): B, _ = x.shape y = self.fc1(x) y = rearrange(y, 'b (c h w) -> b c h w', b=B, h=self.init_size, w=self.init_size) y = nn.ReLU()(self.conv1(y)) y = nn.ReLU()(self.conv2(y)) y = nn.ReLU()(self.conv3(y)) y = nn.Sigmoid()(self.conv4(y)) return y