Spaces:
Runtime error
Runtime error
File size: 2,182 Bytes
64c32eb 441dc58 64c32eb f1f8f95 640e95a 64c32eb 640e95a 64c32eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import PIL.Image as Image
import tensorflow as tf
import tensorflow_hub as hub
import gradio as gr
from einops import rearrange
import s2cell
from geopy.geocoders import Nominatim
TF_MODEL_URL = 'https://tfhub.dev/google/planet/vision/classifier/planet_v2/1'
IMAGE_SHAPE = (299, 299)
labels=pd.read_csv('planet_v2_labelmap.csv')
classifier = tf.keras.Sequential([hub.KerasLayer(TF_MODEL_URL,
input_shape=IMAGE_SHAPE+(3,)
)])
def classify_image(image):
img = image/255.0
img = rearrange(img, 'h w c -> 1 h w c')
prediction = classifier.predict(img)
s2code = np.argmax(prediction)
loc=labels['S2CellId'][s2code]
location=s2cell.token_to_lat_lon(loc)
geolocator = Nominatim(user_agent="coordinateconverter")
address = location
location_add = geolocator.reverse(address)
return location,location_add
title = 'Photo Geolocation'
description = 'Just upload or drop an image to know where your photo is taken . '
article ='''PlaNet -Photo Geolocation with Convolutional Neural Networks. A gradio demo app for estimation of the address and coordinates of your photo.
<div style='text-align: center;'>PlaNet : <a href='https://tfhub.dev/google/planet/vision/classifier/planet_v2/1' target='_blank'>Model Repo</a> | <a href='https://arxiv.org/pdf/1602.05314v1.pdf' target='_blank'>Paper</a></div>'''
ex1 = 'UnitedKingdom_00019_964966881_426cf82f57_1071_98545448@N00.jpg'
ex2 = 'Tanzania_00019_1292210091_693ea74b7a_1088_15274769@N00.jpg'
ex3 = 'Sydney_00073_1226915900_eea86783cd_1128_65768710@N00.jpg'
ex4 = 'HongKong_00041_504492617_7af38e0004_208_7224156@N03.jpg'
iface = gr.Interface(classify_image, inputs=gr.inputs.Image(shape=(299, 299), image_mode="RGB", type="numpy"),
outputs=[gr.outputs.Textbox(label='Latitude,Longitude'),gr.outputs.Textbox(label='Address')],examples=[ex1,ex2,ex3,ex4],
live=False,layout="horizontal", interpretation=None,title=title,
description=description, article=article)
iface.launch() |