abdoolamunir's picture
Upload 5 files
c900913 verified
raw
history blame
1.32 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, validator
from transformers import pipeline
# Initialize the FastAPI app
app = FastAPI()
# Load the sentiment analysis pipeline
sentiment_model = pipeline("text-classification", model="MarieAngeA13/Sentiment-Analysis-BERT")
# Define a Pydantic model for the input data
class Text(BaseModel):
text: str
@validator('text')
def must_not_be_blank(cls, value):
if not value.strip(): # Check if the text is not just whitespace
raise ValueError('Text must not be empty or just whitespace')
return value
@app.get("/")
def read_root():
return {"Hello": "Welcome to our Sentiment Analysis API, type '/docs' after the <URL> to access the Swagger UI"}
@app.post("/analyze")
def analyze(text: Text):
try:
# Process the text through the sentiment analysis model
result = sentiment_model(text.text)
return {"result": result}
except ValueError as ve:
# Handle validation errors, which occur when text is empty or just whitespace
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
# Handle all other kinds of unexpected errors
raise HTTPException(status_code=500, detail="An error occurred during the analysis.")