import streamlit as st import numpy as np import pandas as pd import time import plotly.express as px df = pd.read_csv('bank.csv') st.set_page_config( page_title = 'Real Time Data Science Dashboard', page_icon = '✅', layout = 'wide' ) #Dashboard Title st.title('Real Time/ Live Data Sceince Dashboard') #Selection sur le type de job job_filter = st.selectbox('Select The Job',pd.unique(df['job'])) #Filtrage du job df = df[df["job"] == job_filter] #Creer des KPI avg_age = np.mean(df.age) count_married = int(df[(df.marital == 'married')]['marital'].count()) balance = np.mean(df.balance) kp1,kp2,kp3 = st.columns(3) kp1.metric(label='Age ⏳',value = round(avg_age),delta = round(avg_age)-10) kp2.metric(label="Married Count 💍",value = int(count_married),delta=-10+count_married) kp3.metric(label="A/C Balanc $",value = f"$ {round(balance,2)}" ,delta = -round(balance/count_married)*100) fig_col1,fig_col2 = st.columns(2) with fig_col1: st.markdown("### First Chart") fig1 = px.density_heatmap(data_frame=df,y='age',x='marital') st.write(fig1) with fig_col2: st.markdown("### Second Chart") fig2 = px.histogram(data_frame = df,x='age') st.write(fig2) st.markdown("### Detailed Data view") st.dataframe(df) #time.sleep(1)