Spaces:
Runtime error
Runtime error
File size: 5,217 Bytes
6b1d376 09fb7d0 6b1d376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# -*- coding: utf-8 -*-
"""Untitled31 (2).ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1jx1zW74zl2vFolee01ukC1b11uyTJDZ4
"""
!pip install accelerate
import os
from datasets import load_dataset
# download dataset
dataset = load_dataset("neuralwork/fashion-style-instruct")
print(dataset)
# print a sample triplet
print(dataset["train"][0])
def format_instruction(sample):
return f"""You are a personal stylist recommending fashion advice and clothing combinations. Use the self body and style description below, combined with the event described in the context to generate 5 self-contained and complete outfit combinations.
### Input:
{sample["input"]}
### Context:
{sample["context"]}
### Response:
{sample["completion"]}
"""
sample = dataset["train"][0]
print(format_instruction(sample))
import os
import random
import torch
import gradio as gr
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
events = [
"nature retreat",
"work / office event",
"wedding as a guest",
"tropical vacation",
"conference",
"sports event",
"winter vacation",
"beach",
"play / concert",
"picnic",
"night club",
"national parks",
"music festival",
"job interview",
"city tour",
"halloween party",
"graduation",
"gala / exhibition opening",
"fancy date",
"cruise",
"casual gathering",
"concert",
"cocktail party",
"casual date",
"business meeting",
"camping / hiking",
"birthday party",
"bar",
"business lunch",
"bachelorette / bachelor party",
"semi-casual event",
]
def format_instruction(input, context):
return f"""You are a personal stylist recommending fashion advice and clothing combinations. Use the self body and style description below, combined with the event described in the context to generate 5 self-contained and complete outfit combinations.
### Input:
{input}
### Context:
I'm going to a {context}.
### Response:
"""
def main():
# load base LLM model, LoRA params and tokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"neuralwork/mistral-7b-style-instruct",
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
load_in_4bit=True,
)
tokenizer = AutoTokenizer.from_pretrained("neuralwork/mistral-7b-style-instruct")
def postprocess(outputs, prompt):
outputs = outputs.detach().cpu().numpy()
output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
output = output[len(prompt) :]
return output
def generate(
prompt: str,
event: str,
):
torch.manual_seed(1347)
prompt = format_instruction(str(prompt), str(event))
input_ids = tokenizer(
prompt, return_tensors="pt", truncation=True
).input_ids.cuda()
with torch.inference_mode():
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=1500,
min_new_tokens=10,
do_sample=True,
top_p=0.9,
temperature=.9,
)
output = postprocess(outputs, prompt)
return output
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style="font-weight: 900; margin-bottom: 7px;">
Instruct Fine-tune Mistral-7B-v0
</h1>
<p>Mistral-7B-v0 fine-tuned on the <a href="https://huggingface.co/datasets/neuralwork/fashion-style-instruct">neuralwork/style-instruct</a> dataset.
To use the model, simply describe your body type and personal style and select the type of event you're planning to go.
<br/>
See our <a href="https://neuralwork.ai/">blog post</a> for a detailed tutorial to fine-tune Mistral on your own dataset.
<p/>"""
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
lines=4,
label="Style prompt, describe your body type and fashion style.",
interactive=True,
value="I'm an above average height athletic woman with slightly of broad shoulders and a medium sized bust. I generally prefer a casual but sleek look with dark colors and jeans.",
)
event = gr.Dropdown(
choices=events, value="semi-casual event", label="Event type"
)
generate_button = gr.Button("Get outfit suggestions")
with gr.Column(scale=2):
response = gr.Textbox(
lines=6, label="Outfit suggestions", interactive=False
)
gr.Markdown("From [neuralwork](https://neuralwork.ai/) with :heart:")
generate_button.click(
fn=generate,
inputs=[
prompt,
event,
],
outputs=response,
)
demo.launch(share=True)
if __name__ == "__main__":
main()
|