Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Untitled31 (2).ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1jx1zW74zl2vFolee01ukC1b11uyTJDZ4 | |
""" | |
pip install -r requirements.txt | |
pip install gradio | |
import os | |
from datasets import load_dataset | |
# download dataset | |
dataset = load_dataset("neuralwork/fashion-style-instruct") | |
print(dataset) | |
# print a sample triplet | |
print(dataset["train"][0]) | |
def format_instruction(sample): | |
return f"""You are a personal stylist recommending fashion advice and clothing combinations. Use the self body and style description below, combined with the event described in the context to generate 5 self-contained and complete outfit combinations. | |
### Input: | |
{sample["input"]} | |
### Context: | |
{sample["context"]} | |
### Response: | |
{sample["completion"]} | |
""" | |
sample = dataset["train"][0] | |
print(format_instruction(sample)) | |
import os | |
import random | |
import torch | |
import gradio as gr | |
from peft import AutoPeftModelForCausalLM | |
from transformers import AutoTokenizer | |
events = [ | |
"nature retreat", | |
"work / office event", | |
"wedding as a guest", | |
"tropical vacation", | |
"conference", | |
"sports event", | |
"winter vacation", | |
"beach", | |
"play / concert", | |
"picnic", | |
"night club", | |
"national parks", | |
"music festival", | |
"job interview", | |
"city tour", | |
"halloween party", | |
"graduation", | |
"gala / exhibition opening", | |
"fancy date", | |
"cruise", | |
"casual gathering", | |
"concert", | |
"cocktail party", | |
"casual date", | |
"business meeting", | |
"camping / hiking", | |
"birthday party", | |
"bar", | |
"business lunch", | |
"bachelorette / bachelor party", | |
"semi-casual event", | |
] | |
def format_instruction(input, context): | |
return f"""You are a personal stylist recommending fashion advice and clothing combinations. Use the self body and style description below, combined with the event described in the context to generate 5 self-contained and complete outfit combinations. | |
### Input: | |
{input} | |
### Context: | |
I'm going to a {context}. | |
### Response: | |
""" | |
def main(): | |
# load base LLM model, LoRA params and tokenizer | |
model = AutoPeftModelForCausalLM.from_pretrained( | |
"neuralwork/mistral-7b-style-instruct", | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16, | |
load_in_4bit=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained("neuralwork/mistral-7b-style-instruct") | |
def postprocess(outputs, prompt): | |
outputs = outputs.detach().cpu().numpy() | |
output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
output = output[len(prompt) :] | |
return output | |
def generate( | |
prompt: str, | |
event: str, | |
): | |
torch.manual_seed(1347) | |
prompt = format_instruction(str(prompt), str(event)) | |
input_ids = tokenizer( | |
prompt, return_tensors="pt", truncation=True | |
).input_ids.cuda() | |
with torch.inference_mode(): | |
outputs = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=1500, | |
min_new_tokens=10, | |
do_sample=True, | |
top_p=0.9, | |
temperature=.9, | |
) | |
output = postprocess(outputs, prompt) | |
return output | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Instruct Fine-tune Mistral-7B-v0 | |
</h1> | |
<p>Mistral-7B-v0 fine-tuned on the <a href="https://huggingface.co/datasets/neuralwork/fashion-style-instruct">neuralwork/style-instruct</a> dataset. | |
To use the model, simply describe your body type and personal style and select the type of event you're planning to go. | |
<br/> | |
See our <a href="https://neuralwork.ai/">blog post</a> for a detailed tutorial to fine-tune Mistral on your own dataset. | |
<p/>""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Textbox( | |
lines=4, | |
label="Style prompt, describe your body type and fashion style.", | |
interactive=True, | |
value="I'm an above average height athletic woman with slightly of broad shoulders and a medium sized bust. I generally prefer a casual but sleek look with dark colors and jeans.", | |
) | |
event = gr.Dropdown( | |
choices=events, value="semi-casual event", label="Event type" | |
) | |
generate_button = gr.Button("Get outfit suggestions") | |
with gr.Column(scale=2): | |
response = gr.Textbox( | |
lines=6, label="Outfit suggestions", interactive=False | |
) | |
gr.Markdown("From [neuralwork](https://neuralwork.ai/) with :heart:") | |
generate_button.click( | |
fn=generate, | |
inputs=[ | |
prompt, | |
event, | |
], | |
outputs=response, | |
) | |
demo.launch(share=True) | |
if __name__ == "__main__": | |
main() | |