Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import numpy as np | |
import torch | |
import gradio as gr | |
labels = ['sadness', 'joy','love', 'anger','fear', 'surprise'] | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model_name = "abdulmatinomotoso/emotion_detection_finetuned_distilbert" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def get_emotion(text): | |
input_tensor = tokenizer.encode(text, return_tensors="pt").to("cuda") | |
logits = model(input_tensor).logits | |
softmax = torch.nn.Softmax(dim=1) | |
probs = softmax(logits)[0] | |
probs = probs.cpu().detach().numpy() | |
max_index = np.argmax(probs) | |
emotion = labels[max_index] | |
return emotion | |
demo = gr.Interface(get_emotion, inputs='text', | |
outputs="text", | |
title = "Emotion Detection") | |
if __name__ == "__main__": | |
demo.launch(debug=True) |