File size: 8,211 Bytes
0b1b601
aee19da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31531e8
aee19da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc94eeb
aee19da
 
 
 
 
 
 
31531e8
aee19da
 
 
 
 
 
 
 
 
 
31531e8
 
 
aee19da
 
 
 
 
 
31531e8
 
 
aee19da
 
 
31531e8
aee19da
 
 
 
 
31531e8
aee19da
31531e8
aee19da
 
31531e8
aee19da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109a31
31531e8
 
 
aee19da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31531e8
aee19da
 
 
 
42b6dae
aee19da
 
 
 
 
31531e8
 
aee19da
 
 
31531e8
 
585570a
31531e8
 
 
 
514c77f
31531e8
 
 
 
 
 
0f30aa4
 
31531e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea7699
 
31531e8
 
 
 
 
 
43d3b21
31531e8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import spaces
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from ldm.util import instantiate_from_config
from ldm.models.diffusion.scheduling_lcm import LCMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from torch.utils.data import DataLoader 
from tqdm import tqdm
from icecream import ic
from pathlib import Path
import soundfile as sf
import yaml
import datetime
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
# from pytorch_memlab import LineProfiler,profile
import gradio
import gradio as gr

def load_model_from_config(config, ckpt = None, verbose=True):
    model = instantiate_from_config(config.model)
    if ckpt:
        print(f"Loading model from {ckpt}")
        pl_sd = torch.load(ckpt, map_location="cpu")
        sd = pl_sd["state_dict"]
        
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
            print(u)
    else:
        print(f"Note chat no ckpt is loaded !!!")

    model.cuda()
    model.eval()
    return model




class GenSamples:
    def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None, ddim_steps=2, scale=5, num_samples=1) -> None:
        self.sampler = sampler
        self.model = model
        self.outpath = outpath
        if save_wav:
            assert vocoder is not None
            self.vocoder = vocoder
        self.save_mel = save_mel
        self.save_wav = save_wav
        self.channel_dim = self.model.channels
        self.original_inference_steps = original_inference_steps
        self.ddim_steps = ddim_steps
        self.scale = scale
        self.num_samples = num_samples
    
    def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
        uc = None
        record_dicts = []
        # if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
        #     return record_dicts
        if self.scale != 1.0:
            emptycap = {'ori_caption':self.num_samples*[""],'struct_caption':self.num_samples*[""]}
            uc = self.model.get_learned_conditioning(emptycap)

        for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
            for k,v in prompt.items():
                prompt[k] = self.num_samples * [v]
            c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
            if self.channel_dim>0:
                shape = [self.channel_dim, 20, 312]  # (z_dim, 80//2^x, 848//2^x)
            else:
                shape = [20, 312]
            samples_ddim, _ = self.sampler.sample(S=self.ddim_steps,
                                                conditioning=c,
                                                batch_size=self.num_samples,
                                                shape=shape,
                                                verbose=False,
                                                guidance_scale=self.scale,
                                                original_inference_steps=self.original_inference_steps
                                                )
            x_samples_ddim = self.model.decode_first_stage(samples_ddim)
            for idx,spec in enumerate(x_samples_ddim):
                spec = spec.squeeze(0).cpu().numpy()
                record_dict = {'caption':prompt['ori_caption'][0]}
                if self.save_mel:
                    mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
                    np.save(mel_path,spec)
                    record_dict['mel_path'] = mel_path
                if self.save_wav:
                    wav = self.vocoder.vocode(spec)
                    wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
                    soundfile.write(wav_path, wav, 16000)
                    record_dict['audio_path'] = wav_path
                record_dicts.append(record_dict)
        return record_dicts

@spaces.GPU(enable_queue=True)
def infer(ori_prompt, ddim_steps, num_samples, scale, seed):
    np.random.seed(seed)
    torch.manual_seed(seed)

    prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')


    config = OmegaConf.load("configs/audiolcm.yaml")

    # print("-------quick debug no load ckpt---------")
    # model = instantiate_from_config(config['model'])# for quick debug
    model = load_model_from_config(config, "./model/000184.ckpt")

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    sampler = LCMSampler(model)

    os.makedirs("results/test", exist_ok=True)

    vocoder = VocoderBigVGAN("./model/vocoder",device)


    generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps, ddim_steps=ddim_steps, scale=scale, num_samples=num_samples)
    csv_dicts = []

    with torch.no_grad():
        with model.ema_scope():
                wav_name = f'{prompt["ori_caption"].strip().replace(" ", "-")}'
                generator.gen_test_sample(prompt,wav_name=wav_name)

    print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
    return "results/test/"+wav_name+"_0.wav"

def my_inference_function(text_prompt, ddim_steps, num_samples, scale, seed):
    file_path = infer(text_prompt, ddim_steps, num_samples, scale, seed)
    return file_path


with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("## AudioLCM:Text-to-Audio Generation with Latent Consistency Models")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt: Input your text here.        ")
            run_button = gr.Button()

            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(
                    label="Select from audios num.This number control the number of candidates \
                        (e.g., generate three audios and choose the best to show you). A Larger value usually lead to \
                        better quality with heavier computation", minimum=1, maximum=10, value=1, step=1)
                ddim_steps = gr.Slider(label="ddim_steps", minimum=1,
                                       maximum=50, value=2, step=1)
                scale = gr.Slider(
                    label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=5.0, step=0.1
                )
                seed = gr.Slider(
                    label="Seed:Change this value (any integer number) will lead to a different generation result.",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    value=44,
                )

        with gr.Column():
            outaudio = gr.Audio()
    
    run_button.click(fn=my_inference_function, inputs=[
                    prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])
    with gr.Row():
        with gr.Column():
            gr.Examples(
                        examples = [['An engine revving and then tires squealing',2,1,5,55],['A group of people laughing followed by farting',2,1,5,55],
                                        ['Duck quacking repeatedly',2,1,5,88],['A man speaks as birds chirp and dogs bark',2,1,5,55],['Continuous snoring of a person',2,1,5,55]],
                        inputs = [prompt,ddim_steps, num_samples, scale, seed],
                        outputs = [outaudio]
                        )
        with gr.Column():
            pass

demo.launch(show_error=True)


# gradio_interface = gradio.Interface(
#     fn = my_inference_function,
#     inputs = "text",
#     outputs = "audio"
# )
# gradio_interface.launch()