Spaces:
Sleeping
Sleeping
import argparse, os, sys, glob | |
import pathlib | |
directory = pathlib.Path(os.getcwd()) | |
print(directory) | |
sys.path.append(str(directory)) | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
import pandas as pd | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from icecream import ic | |
from pathlib import Path | |
import yaml | |
from vocoder.bigvgan.models import VocoderBigVGAN | |
import soundfile | |
# from pytorch_memlab import LineProfiler,profile | |
def load_model_from_config(config, ckpt = None, verbose=True): | |
model = instantiate_from_config(config.model) | |
if ckpt: | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
sd = pl_sd["state_dict"] | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
else: | |
print(f"Note chat no ckpt is loaded !!!") | |
model.cuda() | |
model.eval() | |
return model | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt_txt", | |
type=str, | |
nargs="?", | |
default="prompt.txt", | |
help="txt file with prompts in it" | |
) | |
parser.add_argument( | |
"--sample_rate", | |
type=int, | |
default="22050", | |
help="sample rate of wav" | |
) | |
parser.add_argument( | |
"--inpaint", | |
action='store_true', | |
help="if test txt guided inpaint task" | |
) | |
parser.add_argument( | |
"--test-dataset", | |
default="none", | |
help="test which dataset: audiocaps/clotho/fsd50k" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2audio-samples" | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=100, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=1, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=80, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=848, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=1, | |
help="how many samples to produce for the given prompt", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=5.0, # if it's 1, only condition is taken into consideration | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"-r", | |
"--resume", | |
type=str, | |
const=True, | |
default="", | |
nargs="?", | |
help="resume from logdir or checkpoint in logdir", | |
) | |
parser.add_argument( | |
"-b", | |
"--base", | |
type=str, | |
help="paths to base configs. Loaded from left-to-right. " | |
"Parameters can be overwritten or added with command-line options of the form `--key value`.", | |
default="", | |
) | |
parser.add_argument( | |
"--vocoder-ckpt", | |
type=str, | |
help="paths to vocoder checkpoint", | |
default='vocoder/logs/audioset', | |
) | |
return parser.parse_args() | |
class GenSamples: | |
def __init__(self,opt,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True) -> None: | |
self.opt = opt | |
self.sampler = sampler | |
self.model = model | |
self.outpath = outpath | |
if save_wav: | |
assert vocoder is not None | |
self.vocoder = vocoder | |
self.save_mel = save_mel | |
self.save_wav = save_wav | |
self.channel_dim = self.model.channels | |
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'} | |
uc = None | |
record_dicts = [] | |
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')): | |
# return record_dicts | |
if self.opt.scale != 1.0: | |
emptycap = {'ori_caption':self.opt.n_samples*[""],'struct_caption':self.opt.n_samples*[""]} | |
uc = self.model.get_learned_conditioning(emptycap) | |
for n in range(self.opt.n_iter):# trange(self.opt.n_iter, desc="Sampling"): | |
for k,v in prompt.items(): | |
prompt[k] = self.opt.n_samples * [v] | |
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding | |
if self.channel_dim>0: | |
shape = [self.channel_dim, self.opt.H, self.opt.W] # (z_dim, 80//2^x, 848//2^x) | |
else: | |
shape = [self.opt.H, self.opt.W] | |
samples_ddim, _ = self.sampler.sample(S=self.opt.ddim_steps, | |
conditioning=c, | |
batch_size=self.opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=self.opt.scale, | |
unconditional_conditioning=uc, | |
# quantize_x0=use_quantize, | |
eta=self.opt.ddim_eta) | |
x_samples_ddim = self.model.decode_first_stage(samples_ddim) | |
for idx,spec in enumerate(x_samples_ddim): | |
spec = spec.squeeze(0).cpu().numpy() | |
record_dict = {'caption':prompt['ori_caption'][0]} | |
if self.save_mel: | |
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy') | |
np.save(mel_path,spec) | |
record_dict['mel_path'] = mel_path | |
if self.save_wav: | |
wav = self.vocoder.vocode(spec) | |
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav') | |
soundfile.write(wav_path, wav, self.opt.sample_rate) | |
record_dict['audio_path'] = wav_path | |
record_dicts.append(record_dict) | |
return record_dicts | |
def main(): | |
opt = parse_args() | |
config = OmegaConf.load(opt.base) | |
# print("-------quick debug no load ckpt---------") | |
# model = instantiate_from_config(config['model'])# for quick debug | |
model = load_model_from_config(config, opt.resume) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
if 'mel' in opt.vocoder_ckpt: | |
vocoder = VocoderMelGan(opt.vocoder_ckpt,device) | |
elif 'hifi' in opt.vocoder_ckpt: | |
vocoder = VocoderHifigan(opt.vocoder_ckpt,device) | |
elif 'bigv' in opt.vocoder_ckpt: | |
vocoder = VocoderBigVGAN(opt.vocoder_ckpt,device) | |
generator = GenSamples(opt,sampler,model,opt.outdir,vocoder,save_mel = False,save_wav = True) | |
csv_dicts = [] | |
with torch.no_grad(): | |
with model.ema_scope(): | |
if opt.test_dataset != 'none': | |
if opt.test_dataset == 'audiocaps': | |
test_dataset = instantiate_from_config(config['test_dataset']) | |
elif opt.test_dataset == 'clotho': | |
test_dataset = instantiate_from_config(config['test_dataset2']) | |
elif opt.test_dataset == 'fsd50k': | |
test_dataset = instantiate_from_config(config['test_dataset3']) | |
elif opt.test_dataset == 'musiccap': | |
test_dataset = instantiate_from_config(config['test_dataset']) | |
print(f"Dataset: {type(test_dataset)} LEN: {len(test_dataset)}") | |
for item in tqdm(test_dataset): | |
import ipdb | |
# ipdb.set_trace() | |
prompt,f_name = item['caption'],item['f_name'] | |
vname_num_split_index = f_name.rfind('_')# file_names[b]:video_name+'_'+num | |
v_n,num = f_name[:vname_num_split_index],f_name[vname_num_split_index+1:] | |
mel_name = f'{v_n}_sample_{num}' | |
wav_name = f'{v_n}_sample_{num}' | |
# write_gt_wav(v_n,opt.test_dataset2,opt.outdir,opt.sample_rate) | |
csv_dicts.extend(generator.gen_test_sample(prompt,mel_name=mel_name,wav_name=wav_name)) | |
df = pd.DataFrame.from_dict(csv_dicts) | |
df.to_csv(os.path.join(opt.outdir,'result.csv'),sep='\t',index=False) | |
else: | |
with open(opt.prompt_txt,'r') as f: | |
prompts = f.readlines() | |
for prompt in prompts: | |
wav_name = f'{prompt.strip().replace(" ", "-")}' | |
generator.gen_test_sample(prompt,wav_name=wav_name) | |
print(f"Your samples are ready and waiting four you here: \n{opt.outdir} \nEnjoy.") | |
if __name__ == "__main__": | |
main() | |