Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
from ultralytics import YOLO | |
import time | |
# Set page title and layout | |
st.set_page_config(page_title="Blood Component Detection", page_icon="🩸", layout="wide") | |
# Styling the app | |
st.markdown(""" | |
<style> | |
.stApp { | |
background-color: #f4f6f9; | |
} | |
.title { | |
color: #000; | |
font-size: 40px; | |
font-weight: bold; | |
margin-top: 20px; | |
text-align: center; | |
} | |
.subtitle { | |
color: #555; | |
font-size: 20px; | |
text-align: center; | |
} | |
.upload-container { | |
background-color: #fff; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1); | |
margin-bottom: 20px; | |
} | |
.predict-btn { | |
background-color: #4CAF50; | |
color: white; | |
padding: 10px 20px; | |
border-radius: 5px; | |
font-size: 18px; | |
width: 100%; | |
cursor: pointer; | |
} | |
.predict-btn:hover { | |
background-color: #45a049; | |
} | |
.stImage { | |
border-radius: 15px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Set title and subtitle | |
st.markdown('<div class="title">Blood Component Detection</div>', unsafe_allow_html=True) | |
st.markdown('<div class="subtitle">Detect and classify blood cells in uploaded images</div>', unsafe_allow_html=True) | |
# Load the YOLO model | |
model = YOLO('blood_detection_model.pt') | |
# Image uploader with custom style | |
with st.container(): | |
st.markdown('<div class="upload-container">', unsafe_allow_html=True) | |
uploaded_image = st.file_uploader("Upload Image (JPG, JPEG, PNG)", type=['jpg', 'jpeg', 'png']) | |
st.markdown('</div>', unsafe_allow_html=True) | |
if uploaded_image is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_image) | |
image = image.convert("RGB") | |
st.image(image, caption="Uploaded Image", use_container_width=True) | |
# Prediction button | |
with st.container(): | |
if st.button('Classify Image', key="predict", help="Click to start classification", use_container_width=True): | |
st.write("Classifying... Please wait.") | |
# Display a progress bar while the model processes | |
progress_bar = st.progress(0) | |
for i in range(100): | |
time.sleep(0.01) | |
progress_bar.progress(i+1) | |
# Convert the image for prediction | |
### img_array = np.array(image) | |
# Perform prediction with a low confidence threshold | |
results = model.predict(source=image, imgsz=640, conf=0.1) | |
# Display results | |
for result in results: | |
print(result.boxes.xyxy, result.boxes.cls, result.boxes.conf) | |
# Print bounding boxes, class IDs, and confidence | |
# Show results | |
for i in range (1, 25): | |
if len(result[0].boxes) > 0: | |
# Extract detection results | |
st.write("Bounding Boxes:", result[0].boxes.xyxy) | |
st.write("Class IDs:", result[0].boxes.cls) | |
st.write("Confidence Scores:", result[0].boxes.conf) | |
# Plot the results (image with bounding boxes) | |
output_image = result[i].plot() # This should plot bounding boxes | |
st.image(output_image, caption="Predicted Image with Bounding Boxes", use_container_width=True) | |
else: | |
st.write("No objects detected.") | |
st.write("Raw Prediction Results:", results) | |
st.write("Boxes:", results[0].boxes.xyxy) | |
st.write("Classes:", results[0].boxes.cls) | |
st.write("Confidences:", results[0].boxes.conf) | |