abhisheksan's picture
Update app.py
f12e1f2 verified
import gradio as gr
from fastapi import FastAPI
from pydantic import BaseModel, Field
from typing import Optional
# Initialize FastAPI app
app = FastAPI()
# Load the model once at startup
model = gr.load("models/meta-llama/Llama-3.2-3B-Instruct")
class PoemRequest(BaseModel):
prompt: str = Field(..., description="The prompt for poem generation")
temperature: Optional[float] = Field(0.7, ge=0.1, le=2.0, description="Controls randomness in generation")
top_p: Optional[float] = Field(0.9, ge=0.1, le=1.0, description="Nucleus sampling parameter")
top_k: Optional[int] = Field(50, ge=1, le=100, description="Top-k sampling parameter")
max_length: Optional[int] = Field(200, ge=50, le=500, description="Maximum length of generated text")
repetition_penalty: Optional[float] = Field(1.1, ge=1.0, le=2.0, description="Penalty for repetition")
class PoemResponse(BaseModel):
poem: str
parameters_used: dict
@app.post("/generate_poem")
async def generate_poem(request: PoemRequest) -> PoemResponse:
"""
Generate a poem based on the provided prompt and parameters.
Returns:
PoemResponse: Contains the generated poem and the parameters used
"""
try:
# Prepare generation parameters
generation_config = {
"temperature": request.temperature,
"top_p": request.top_p,
"top_k": request.top_k,
"max_length": request.max_length,
"repetition_penalty": request.repetition_penalty,
}
# Generate the poem
response = model(
request.prompt,
**generation_config
)
return PoemResponse(
poem=response,
parameters_used=generation_config
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)