Spaces:
Running
Running
File size: 40,787 Bytes
09d9560 a96ed1b 2442c76 f4f946e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
2024-11-16 23:21:31,464 - main - INFO - Loading tokenizer...
2024-11-16 23:21:32,228 - main - WARNING - Could not load custom vocabulary: property 'vocab' of 'GPT2TokenizerFast' object has no setter
2024-11-16 23:21:32,229 - main - INFO - Loading model...
2024-11-16 23:21:32,229 - main - ERROR - Model file not found at ./models\poeticagpt-quantized-new.pth
2024-11-16 23:21:32,231 - main - ERROR - Failed to initialize model manager
2024-11-16 23:30:46,037 - main - INFO - Loading tokenizer...
2024-11-16 23:30:46,798 - main - WARNING - Could not load custom vocabulary: property 'vocab' of 'GPT2TokenizerFast' object has no setter
2024-11-16 23:30:46,799 - main - INFO - Loading model...
2024-11-16 23:30:46,799 - main - ERROR - Error initializing model: Incorrect path_or_model_id: './models/poeticagpt.pth'. Please provide either the path to a local folder or the repo_id of a model on the Hub.
2024-11-16 23:30:46,800 - main - ERROR - Detailed traceback:
Traceback (most recent call last):
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\utils\hub.py", line 402, in cached_file
resolved_file = hf_hub_download(
^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\huggingface_hub\utils\_validators.py", line 106, in _inner_fn
validate_repo_id(arg_value)
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\huggingface_hub\utils\_validators.py", line 154, in validate_repo_id
raise HFValidationError(
huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': './models/poeticagpt.pth'. Use `repo_type` argument if needed.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "E:\Self Work\My Projects\Poetica HuggingFace Server\poetica\main.py", line 88, in initialize
self.model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\models\auto\auto_factory.py", line 485, in from_pretrained
resolved_config_file = cached_file(
^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\utils\hub.py", line 466, in cached_file
raise EnvironmentError(
OSError: Incorrect path_or_model_id: './models/poeticagpt.pth'. Please provide either the path to a local folder or the repo_id of a model on the Hub.
2024-11-16 23:30:46,803 - main - ERROR - Failed to initialize model manager
2024-11-16 23:33:40,483 - main - INFO - Loading tokenizer...
2024-11-16 23:33:41,621 - main - WARNING - Could not load custom vocabulary: property 'vocab' of 'GPT2TokenizerFast' object has no setter
2024-11-16 23:33:41,622 - main - INFO - Loading model...
2024-11-16 23:33:43,332 - main - ERROR - Error initializing model: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./models/.
2024-11-16 23:33:43,333 - main - ERROR - Detailed traceback:
Traceback (most recent call last):
File "E:\Self Work\My Projects\Poetica HuggingFace Server\poetica\main.py", line 88, in initialize
self.model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained
return model_class.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\modeling_utils.py", line 3447, in from_pretrained
raise EnvironmentError(
OSError: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./models/.
2024-11-16 23:33:43,335 - main - ERROR - Failed to initialize model manager
2024-11-16 23:34:18,283 - main - INFO - Loading tokenizer...
2024-11-16 23:34:18,966 - main - WARNING - Could not load custom vocabulary: property 'vocab' of 'GPT2TokenizerFast' object has no setter
2024-11-16 23:34:18,966 - main - INFO - Loading model...
2024-11-16 23:34:20,499 - main - ERROR - Error initializing model: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./models/.
2024-11-16 23:34:20,500 - main - ERROR - Detailed traceback:
Traceback (most recent call last):
File "E:\Self Work\My Projects\Poetica HuggingFace Server\poetica\main.py", line 88, in initialize
self.model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained
return model_class.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\modeling_utils.py", line 3447, in from_pretrained
raise EnvironmentError(
OSError: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./models/.
2024-11-16 23:34:20,502 - main - ERROR - Failed to initialize model manager
2024-11-16 23:35:15,983 - main - INFO - Loading tokenizer...
2024-11-16 23:35:17,111 - main - WARNING - Could not load custom vocabulary: property 'vocab' of 'GPT2TokenizerFast' object has no setter
2024-11-16 23:35:17,111 - main - INFO - Loading model...
2024-11-16 23:35:18,795 - main - ERROR - Error initializing model: Unable to load weights from pytorch checkpoint file for './models/pytorch_model.bin' at './models/pytorch_model.bin'. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
2024-11-16 23:35:18,796 - main - ERROR - Detailed traceback:
Traceback (most recent call last):
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\modeling_utils.py", line 575, in load_state_dict
return torch.load(
^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\torch\serialization.py", line 1024, in load
raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
_pickle.UnpicklingError: Weights only load failed. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution.Do it only if you get the file from a trusted source. WeightsUnpickler error: Unsupported class torch.qint8
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\modeling_utils.py", line 584, in load_state_dict
if f.read(7) == "version":
^^^^^^^^^
File "D:\Program Files\Python\Lib\encodings\cp1252.py", line 23, in decode
return codecs.charmap_decode(input,self.errors,decoding_table)[0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 1651: character maps to <undefined>
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "E:\Self Work\My Projects\Poetica HuggingFace Server\poetica\main.py", line 88, in initialize
self.model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained
return model_class.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\modeling_utils.py", line 3703, in from_pretrained
state_dict = load_state_dict(resolved_archive_file)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\transformers\modeling_utils.py", line 596, in load_state_dict
raise OSError(
OSError: Unable to load weights from pytorch checkpoint file for './models/pytorch_model.bin' at './models/pytorch_model.bin'. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
2024-11-16 23:35:18,815 - main - ERROR - Failed to initialize model manager
2024-11-16 23:37:05,649 - main - INFO - Loading tokenizer...
2024-11-16 23:37:06,372 - main - INFO - Loading model...
2024-11-16 23:40:15,280 - main - ERROR - Error initializing model: Error(s) in loading state_dict for GPT2LMHeadModel:
Missing key(s) in state_dict: "transformer.h.6.ln_1.weight", "transformer.h.6.ln_1.bias", "transformer.h.6.attn.c_attn.weight", "transformer.h.6.attn.c_attn.bias", "transformer.h.6.attn.c_proj.weight", "transformer.h.6.attn.c_proj.bias", "transformer.h.6.ln_2.weight", "transformer.h.6.ln_2.bias", "transformer.h.6.mlp.c_fc.weight", "transformer.h.6.mlp.c_fc.bias", "transformer.h.6.mlp.c_proj.weight", "transformer.h.6.mlp.c_proj.bias", "transformer.h.7.ln_1.weight", "transformer.h.7.ln_1.bias", "transformer.h.7.attn.c_attn.weight", "transformer.h.7.attn.c_attn.bias", "transformer.h.7.attn.c_proj.weight", "transformer.h.7.attn.c_proj.bias", "transformer.h.7.ln_2.weight", "transformer.h.7.ln_2.bias", "transformer.h.7.mlp.c_fc.weight", "transformer.h.7.mlp.c_fc.bias", "transformer.h.7.mlp.c_proj.weight", "transformer.h.7.mlp.c_proj.bias", "transformer.h.8.ln_1.weight", "transformer.h.8.ln_1.bias", "transformer.h.8.attn.c_attn.weight", "transformer.h.8.attn.c_attn.bias", "transformer.h.8.attn.c_proj.weight", "transformer.h.8.attn.c_proj.bias", "transformer.h.8.ln_2.weight", "transformer.h.8.ln_2.bias", "transformer.h.8.mlp.c_fc.weight", "transformer.h.8.mlp.c_fc.bias", "transformer.h.8.mlp.c_proj.weight", "transformer.h.8.mlp.c_proj.bias", "transformer.h.9.ln_1.weight", "transformer.h.9.ln_1.bias", "transformer.h.9.attn.c_attn.weight", "transformer.h.9.attn.c_attn.bias", "transformer.h.9.attn.c_proj.weight", "transformer.h.9.attn.c_proj.bias", "transformer.h.9.ln_2.weight", "transformer.h.9.ln_2.bias", "transformer.h.9.mlp.c_fc.weight", "transformer.h.9.mlp.c_fc.bias", "transformer.h.9.mlp.c_proj.weight", "transformer.h.9.mlp.c_proj.bias", "transformer.h.10.ln_1.weight", "transformer.h.10.ln_1.bias", "transformer.h.10.attn.c_attn.weight", "transformer.h.10.attn.c_attn.bias", "transformer.h.10.attn.c_proj.weight", "transformer.h.10.attn.c_proj.bias", "transformer.h.10.ln_2.weight", "transformer.h.10.ln_2.bias", "transformer.h.10.mlp.c_fc.weight", "transformer.h.10.mlp.c_fc.bias", "transformer.h.10.mlp.c_proj.weight", "transformer.h.10.mlp.c_proj.bias", "transformer.h.11.ln_1.weight", "transformer.h.11.ln_1.bias", "transformer.h.11.attn.c_attn.weight", "transformer.h.11.attn.c_attn.bias", "transformer.h.11.attn.c_proj.weight", "transformer.h.11.attn.c_proj.bias", "transformer.h.11.ln_2.weight", "transformer.h.11.ln_2.bias", "transformer.h.11.mlp.c_fc.weight", "transformer.h.11.mlp.c_fc.bias", "transformer.h.11.mlp.c_proj.weight", "transformer.h.11.mlp.c_proj.bias", "lm_head.weight".
Unexpected key(s) in state_dict: "lm_head.scale", "lm_head.zero_point", "lm_head._packed_params.dtype", "lm_head._packed_params._packed_params".
size mismatch for transformer.wte.weight: copying a param with shape torch.Size([50257, 384]) from checkpoint, the shape in current model is torch.Size([50257, 768]).
size mismatch for transformer.wpe.weight: copying a param with shape torch.Size([128, 384]) from checkpoint, the shape in current model is torch.Size([1024, 768]).
size mismatch for transformer.h.0.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.0.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.0.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.0.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.0.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.0.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.0.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.1.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.1.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.1.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.1.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.1.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.1.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.2.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.2.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.2.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.2.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.2.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.2.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.3.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.3.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.3.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.3.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.3.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.3.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.4.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.4.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.4.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.4.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.4.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.4.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.5.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.5.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.5.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.5.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.5.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.5.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.ln_f.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.ln_f.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
2024-11-16 23:40:15,283 - main - ERROR - Detailed traceback:
Traceback (most recent call last):
File "E:\Self Work\My Projects\Poetica HuggingFace Server\poetica\main.py", line 74, in initialize
self.model.load_state_dict(state_dict)
File "e:\Self Work\My Projects\Poetica HuggingFace Server\.venv\Lib\site-packages\torch\nn\modules\module.py", line 2189, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for GPT2LMHeadModel:
Missing key(s) in state_dict: "transformer.h.6.ln_1.weight", "transformer.h.6.ln_1.bias", "transformer.h.6.attn.c_attn.weight", "transformer.h.6.attn.c_attn.bias", "transformer.h.6.attn.c_proj.weight", "transformer.h.6.attn.c_proj.bias", "transformer.h.6.ln_2.weight", "transformer.h.6.ln_2.bias", "transformer.h.6.mlp.c_fc.weight", "transformer.h.6.mlp.c_fc.bias", "transformer.h.6.mlp.c_proj.weight", "transformer.h.6.mlp.c_proj.bias", "transformer.h.7.ln_1.weight", "transformer.h.7.ln_1.bias", "transformer.h.7.attn.c_attn.weight", "transformer.h.7.attn.c_attn.bias", "transformer.h.7.attn.c_proj.weight", "transformer.h.7.attn.c_proj.bias", "transformer.h.7.ln_2.weight", "transformer.h.7.ln_2.bias", "transformer.h.7.mlp.c_fc.weight", "transformer.h.7.mlp.c_fc.bias", "transformer.h.7.mlp.c_proj.weight", "transformer.h.7.mlp.c_proj.bias", "transformer.h.8.ln_1.weight", "transformer.h.8.ln_1.bias", "transformer.h.8.attn.c_attn.weight", "transformer.h.8.attn.c_attn.bias", "transformer.h.8.attn.c_proj.weight", "transformer.h.8.attn.c_proj.bias", "transformer.h.8.ln_2.weight", "transformer.h.8.ln_2.bias", "transformer.h.8.mlp.c_fc.weight", "transformer.h.8.mlp.c_fc.bias", "transformer.h.8.mlp.c_proj.weight", "transformer.h.8.mlp.c_proj.bias", "transformer.h.9.ln_1.weight", "transformer.h.9.ln_1.bias", "transformer.h.9.attn.c_attn.weight", "transformer.h.9.attn.c_attn.bias", "transformer.h.9.attn.c_proj.weight", "transformer.h.9.attn.c_proj.bias", "transformer.h.9.ln_2.weight", "transformer.h.9.ln_2.bias", "transformer.h.9.mlp.c_fc.weight", "transformer.h.9.mlp.c_fc.bias", "transformer.h.9.mlp.c_proj.weight", "transformer.h.9.mlp.c_proj.bias", "transformer.h.10.ln_1.weight", "transformer.h.10.ln_1.bias", "transformer.h.10.attn.c_attn.weight", "transformer.h.10.attn.c_attn.bias", "transformer.h.10.attn.c_proj.weight", "transformer.h.10.attn.c_proj.bias", "transformer.h.10.ln_2.weight", "transformer.h.10.ln_2.bias", "transformer.h.10.mlp.c_fc.weight", "transformer.h.10.mlp.c_fc.bias", "transformer.h.10.mlp.c_proj.weight", "transformer.h.10.mlp.c_proj.bias", "transformer.h.11.ln_1.weight", "transformer.h.11.ln_1.bias", "transformer.h.11.attn.c_attn.weight", "transformer.h.11.attn.c_attn.bias", "transformer.h.11.attn.c_proj.weight", "transformer.h.11.attn.c_proj.bias", "transformer.h.11.ln_2.weight", "transformer.h.11.ln_2.bias", "transformer.h.11.mlp.c_fc.weight", "transformer.h.11.mlp.c_fc.bias", "transformer.h.11.mlp.c_proj.weight", "transformer.h.11.mlp.c_proj.bias", "lm_head.weight".
Unexpected key(s) in state_dict: "lm_head.scale", "lm_head.zero_point", "lm_head._packed_params.dtype", "lm_head._packed_params._packed_params".
size mismatch for transformer.wte.weight: copying a param with shape torch.Size([50257, 384]) from checkpoint, the shape in current model is torch.Size([50257, 768]).
size mismatch for transformer.wpe.weight: copying a param with shape torch.Size([128, 384]) from checkpoint, the shape in current model is torch.Size([1024, 768]).
size mismatch for transformer.h.0.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.0.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.0.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.0.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.0.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.0.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.0.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.0.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.1.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.1.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.1.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.1.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.1.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.1.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.1.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.2.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.2.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.2.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.2.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.2.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.2.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.2.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.3.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.3.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.3.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.3.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.3.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.3.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.3.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.4.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.4.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.4.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.4.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.4.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.4.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.4.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_1.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_1.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.attn.c_attn.weight: copying a param with shape torch.Size([384, 1152]) from checkpoint, the shape in current model is torch.Size([768, 2304]).
size mismatch for transformer.h.5.attn.c_attn.bias: copying a param with shape torch.Size([1152]) from checkpoint, the shape in current model is torch.Size([2304]).
size mismatch for transformer.h.5.attn.c_proj.weight: copying a param with shape torch.Size([384, 384]) from checkpoint, the shape in current model is torch.Size([768, 768]).
size mismatch for transformer.h.5.attn.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_2.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.ln_2.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.h.5.mlp.c_fc.weight: copying a param with shape torch.Size([384, 1536]) from checkpoint, the shape in current model is torch.Size([768, 3072]).
size mismatch for transformer.h.5.mlp.c_fc.bias: copying a param with shape torch.Size([1536]) from checkpoint, the shape in current model is torch.Size([3072]).
size mismatch for transformer.h.5.mlp.c_proj.weight: copying a param with shape torch.Size([1536, 384]) from checkpoint, the shape in current model is torch.Size([3072, 768]).
size mismatch for transformer.h.5.mlp.c_proj.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.ln_f.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
size mismatch for transformer.ln_f.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([768]).
2024-11-16 23:40:15,287 - main - ERROR - Failed to initialize model manager
2024-11-16 23:45:40,456 - main - INFO - Loading tokenizer...
2024-11-16 23:45:41,738 - main - INFO - Loading model...
2024-11-16 23:45:42,454 - main - WARNING - Missing keys: ['lm_head.weight']
2024-11-16 23:45:42,455 - main - WARNING - Unexpected keys: ['lm_head.scale', 'lm_head.zero_point', 'lm_head._packed_params.dtype', 'lm_head._packed_params._packed_params']
2024-11-16 23:45:42,459 - main - INFO - Model and tokenizer loaded successfully
|