File size: 12,197 Bytes
8701113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 52,
   "id": "c8f31382-77ac-47f8-bd3a-1c805b2d3e75",
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import soundfile\n",
    "import os, glob, pickle\n",
    "import numpy as np\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.neural_network import MLPClassifier\n",
    "from sklearn.metrics import accuracy_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "b0510279-2195-4784-a52b-20b6c18e216c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Extract features (mfcc, chroma, mel) from a sound file\n",
    "def extract_feature(file_name, mfcc, chroma, mel):\n",
    "    with soundfile.SoundFile(file_name) as sound_file:\n",
    "        X = sound_file.read(dtype=\"float32\")\n",
    "        sample_rate=sound_file.samplerate\n",
    "        if chroma:\n",
    "            stft=np.abs(librosa.stft(X))\n",
    "            result=np.array([])\n",
    "        if mfcc:\n",
    "            mfccs=np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)\n",
    "            result=np.hstack((result, mfccs))\n",
    "        if chroma:\n",
    "            chroma=np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)\n",
    "            result=np.hstack((result, chroma))\n",
    "        if mel:\n",
    "            mel=np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)\n",
    "            result=np.hstack((result, mel))\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "d84a7785-e5b3-44ee-b484-a45fe61aa2af",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Emotions in the RAVDESS dataset\n",
    "emotions={\n",
    "  '01':'neutral',\n",
    "  '02':'calm',\n",
    "  '03':'happy',\n",
    "  '04':'sad',\n",
    "  '05':'angry',\n",
    "  '06':'fearful',\n",
    "  '07':'disgust',\n",
    "  '08':'surprised'\n",
    "}\n",
    "\n",
    "# Emotions to observe\n",
    "observed_emotions=['calm', 'happy', 'fearful', 'disgust']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "5ebdbf11-1c7d-4bbf-9ff7-41b04cfbc902",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Load the data and extract features for each sound file\n",
    "def load_data(test_size=0.2):\n",
    "    x,y=[],[]\n",
    "    for file in glob.glob(\"C:\\\\Users\\\\Abhay\\\\Downloads\\\\dataset\\\\Actor_*\\\\*.wav\"):\n",
    "        file_name = os.path.basename(file)\n",
    "        emotion=emotions[file_name.split(\"-\")[2]]\n",
    "        if emotion not in observed_emotions:\n",
    "            continue\n",
    "        feature = extract_feature(file, mfcc=True, chroma=True, mel=True)\n",
    "        x.append(feature)\n",
    "        y.append(emotion)\n",
    "    return train_test_split(np.array(x), y, test_size=test_size, random_state=9)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "id": "17e9421d-b474-4fc8-8321-435a2093c0cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Split the dataset\n",
    "x_train,x_test,y_train,y_test = load_data(test_size=0.25)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "id": "eb1d0e4a-1766-4d3d-85ea-f69d88b6a007",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(576, 192)\n"
     ]
    }
   ],
   "source": [
    "#Get the shape of the training and testing datasets\n",
    "print((x_train.shape[0], x_test.shape[0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "id": "5a765afc-663d-48c0-9dbd-d58caf9069cc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Features extracted: 180\n"
     ]
    }
   ],
   "source": [
    "# Get the number of features extracted\n",
    "print(f'Features extracted: {x_train.shape[1]}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "id": "29c258f3-dbb6-4214-aea4-590487f5c68a",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Initialize the Multi Layer Perceptron Classifier\n",
    "model=MLPClassifier(alpha=0.01, batch_size=256, epsilon=1e-08, hidden_layer_sizes=(300,), learning_rate='adaptive', max_iter=500)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "id": "76939a33-c7fb-4ee3-b25f-af609dd3a5ce",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>MLPClassifier(alpha=0.01, batch_size=256, hidden_layer_sizes=(300,),\n",
       "              learning_rate=&#x27;adaptive&#x27;, max_iter=500)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">MLPClassifier</label><div class=\"sk-toggleable__content\"><pre>MLPClassifier(alpha=0.01, batch_size=256, hidden_layer_sizes=(300,),\n",
       "              learning_rate=&#x27;adaptive&#x27;, max_iter=500)</pre></div></div></div></div></div>"
      ],
      "text/plain": [
       "MLPClassifier(alpha=0.01, batch_size=256, hidden_layer_sizes=(300,),\n",
       "              learning_rate='adaptive', max_iter=500)"
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#Train the model\n",
    "model.fit(x_train,y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "id": "41976825-55d6-46eb-a389-eba2cacc540d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Predict for the test set\n",
    "y_pred=model.predict(x_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "id": "2401ce73-6268-4751-9d68-3aa15f870f99",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Accuracy: 66.67%\n"
     ]
    }
   ],
   "source": [
    "# Calculate the accuracy of our model\n",
    "accuracy=accuracy_score(y_true=y_test, y_pred=y_pred)\n",
    "\n",
    "# Print the accuracy\n",
    "print(\"Accuracy: {:.2f}%\".format(accuracy*100))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "id": "568ff907-2558-4f2b-bf4a-f10b889233cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "with  open('ser_model.pickle','wb') as f:\n",
    "    pickle.dump(model,f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "id": "19d865fc-504e-40dd-9822-a49ae0f3e568",
   "metadata": {},
   "outputs": [],
   "source": [
    "with  open('ser_model.pickle','rb') as f:\n",
    "    mod = pickle.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "id": "7cecff7e-060b-461d-a597-2b11ee731d97",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.6666666666666666"
      ]
     },
     "execution_count": 71,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mod.score(x_test,y_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd184951-3715-4256-86ae-20d00a17a57b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}