File size: 6,147 Bytes
761f4da
 
96705f2
 
2587bd0
96705f2
0c2700d
961c5fc
197af76
 
8ced839
0c2700d
d5de1e1
 
 
0c2700d
961c5fc
 
 
 
 
 
 
 
761f4da
7dfcf08
d0d585b
 
 
 
 
 
 
 
 
 
 
8ced839
197af76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ced839
0c2700d
961c5fc
fbbc260
 
 
 
 
 
 
 
 
0c2700d
 
 
 
 
 
 
 
 
 
96705f2
b45a874
197af76
e4c9916
8ced839
e4c9916
d0d585b
e4c9916
d0d585b
0c2700d
96705f2
 
 
0c2700d
96705f2
 
9e3243b
96705f2
 
 
761f4da
96705f2
 
 
961c5fc
ddd31a2
 
 
 
 
 
 
 
 
 
 
 
89a385f
ddd31a2
 
 
 
fbbc260
 
 
 
ddd31a2
 
 
 
 
 
 
 
 
 
 
 
 
96705f2
c8aa6df
 
 
 
 
f20ef5e
f97c524
96705f2
 
 
 
 
0c2700d
 
4190733
 
78eae32
961c5fc
f20ef5e
 
 
 
964aa5f
 
 
 
 
 
 
 
 
 
ed2cf11
 
964aa5f
378962d
 
fbbc260
79b2a39
378962d
 
 
961c5fc
378962d
96705f2
 
0c2700d
 
c2343d1
761f4da
 
0c2700d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import os
import cv2
import face_recognition
from fastai.vision.all import load_learner
import time
import base64
from deepface import DeepFace
import torchaudio
import moviepy.editor as mp
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline

# import pathlib
# temp = pathlib.PosixPath
# pathlib.PosixPath = pathlib.WindowsPath

backends = [
  'opencv', 
  'ssd', 
  'dlib', 
  'mtcnn', 
  'retinaface', 
  'mediapipe'
]

emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")

model = load_learner("gaze-recognizer-v3.pkl")

def analyze_emotion(text):
    result = emotion_pipeline(text)
    return result

def analyze_sentiment(text):
    result = sentiment_pipeline(text)
    return result

def getTranscription(path):
    # Insert Local Video File Path
    clip = mp.VideoFileClip(path)

    # Insert Local Audio File Path
    clip.audio.write_audiofile(r"audio.wav")
    
    waveform, sample_rate = torchaudio.load("audio.wav")
    resampler = torchaudio.transforms.Resample(sample_rate, 16000)
    waveform = resampler(waveform)[0]
    
    processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
    model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
    model.config.forced_decoder_ids = None
    
    input_features = processor(waveform.squeeze(dim=0), return_tensors="pt").input_features 
    predicted_ids = model.generate(input_features)

    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    
    return transcription[0]

def video_processing(video_file, encoded_video):
    emotion_count = 0
    video_emotions = {
        'angry': 0,
        'disgust': 0,
        'fear': 0,
        'happy': 0,
        'sad': 0,
        'surprise': 0,
        'neutral':0
    }

    if encoded_video != "":
    
        decoded_file_data = base64.b64decode(encoded_video)

        with open("temp_video.mp4", "wb") as f:
            f.write(decoded_file_data)
        
        video_file = "temp_video.mp4"

    start_time = time.time()

    transcription = getTranscription(video_file)
    print(transcription)
    text_emotion = analyze_emotion(transcription)
    print(text_emotion)
    text_sentiment = analyze_sentiment(transcription)
    print(text_sentiment)

    video_capture = cv2.VideoCapture(video_file)
    on_camera = 0
    off_camera = 0
    total = 0

    while True:
        # Read a single frame from the video
        for i in range(24*3):
            ret, frame = video_capture.read()
            if not ret:
                break

        # If there are no more frames, break out of the loop
        if not ret:
            break

        # Convert the frame to RGB color (face_recognition uses RGB)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Find all the faces in the frame using a pre-trained convolutional neural network.
        face_locations = face_recognition.face_locations(gray)

        if len(face_locations) > 0:
            # Show the original frame with face rectangles drawn around the faces
            for top, right, bottom, left in face_locations:
                # cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
                face_image = gray[top:bottom, left:right]
                color_image = frame[top:bottom, left:right]

                # Resize the face image to the desired size
                resized_face_image = cv2.resize(face_image, (128,128))

                try:
                    detected_face_emotion = DeepFace.analyze(color_image,actions=['emotion'],detector_backend = backends[2],enforce_detection = False)# 2,3, 4 works
                    for emotion in detected_face_emotion:
                        for key in video_emotions.keys():
                            video_emotions[key] += emotion['emotion'][key]
                    emotion_count += 1
                except Exception as e:
                    emotion = 0
                    pass

                # Predict the class of the resized face image using the model
                result = model.predict(resized_face_image)
                print(result[0])
                if result[0] == 'on_camera':
                    on_camera += 1
                elif result[0] == 'off_camera':
                    off_camera += 1
                total += 1

    try:
        # your processing code here
        gaze_percentage = on_camera / total * 100
    except Exception as e:
        print(f"An error occurred while processing the video: {e}")
        gaze_percentage = 'ERROR : no face detected'
    print(f'Total = {total},on_camera = {on_camera},off_camera = {off_camera}')
    # Release the video capture object and close all windows
    video_capture.release()
    cv2.destroyAllWindows()
    end_time = time.time()
    print(f'Time taken: {end_time-start_time}')
    if os.path.exists("temp_video.mp4"): 
        os.remove("temp_video.mp4")
    if os.path.exists("audio.wav"): 
        os.remove("audio.wav")
    print(gaze_percentage)

    # Divide all emotion values by emotion count
    if emotion_count > 0:
        for key in video_emotions.keys():
            video_emotions[key] /= emotion_count

    
    # Modify 'angry' key to 'anger'
    video_emotions['anger'] = video_emotions.pop('angry')
    
    # Modify 'happy' key to 'joy'
    video_emotions['joy'] = video_emotions.pop('happy')
    
    # Modify 'sad' key to 'sadness'
    video_emotions['sadness'] = video_emotions.pop('sad')


    
    final_result_dict = {
        "gaze_percentage" : gaze_percentage,
        "face_emotion" : video_emotions,
        "text_emotion" : text_emotion[0],
        "transcription" : transcription,
        "text_sentiment" : text_sentiment
    }
    
    return final_result_dict


demo = gr.Interface(fn=video_processing,
                     inputs=["video", "text"],
                     outputs="json")

if __name__ == "__main__":
    demo.launch()