File size: 4,378 Bytes
37bff96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
from PIL import Image
import gradio as gr
from featup.util import norm, unnorm, pca, remove_axes
from pytorch_lightning import seed_everything
import os
import requests
import csv
import spaces


def plot_feats(image, lr, hr):
    assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
    seed_everything(0)
    [lr_feats_pca, hr_feats_pca], _ = pca(
        [lr.unsqueeze(0), hr.unsqueeze(0)], dim=9)
    fig, ax = plt.subplots(3, 3, figsize=(15, 15))
    ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu())
    ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu())
    ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu())

    ax[0, 0].set_title("Image", fontsize=22)
    ax[0, 1].set_title("Original", fontsize=22)
    ax[0, 2].set_title("Upsampled Features", fontsize=22)

    ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
    ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22)
    ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())

    ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
    ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22)
    ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())

    ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
    ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22)
    ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())

    remove_axes(ax)
    plt.tight_layout()
    plt.close(fig)  # Close plt to avoid additional empty plots
    return fig


def download_image(url, save_path):
    response = requests.get(url)
    with open(save_path, 'wb') as file:
        file.write(response.content)


base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/"
sample_images_urls = {
    "skate.jpg": base_url + "skate.jpg",
    "car.jpg": base_url + "car.jpg",
    "plant.png": base_url + "plant.png",
}

sample_images_dir = "/tmp/sample_images"

# Ensure the directory for sample images exists
os.makedirs(sample_images_dir, exist_ok=True)

# Download each sample image
for filename, url in sample_images_urls.items():
    save_path = os.path.join(sample_images_dir, filename)
    # Download the image if it doesn't already exist
    if not os.path.exists(save_path):
        print(f"Downloading {filename}...")
        download_image(url, save_path)
    else:
        print(f"{filename} already exists. Skipping download.")

os.environ['TORCH_HOME'] = '/tmp/.cache'
os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
csv.field_size_limit(100000000)
options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50']

image_input = gr.Image(label="Choose an image to featurize",
                       height=480,
                       type="pil",
                       image_mode='RGB',
                       sources=['upload', 'webcam', 'clipboard']
                       )
model_option = gr.Radio(options, value="dino16",
                        label='Choose a backbone to upsample')

models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}


@spaces.GPU
def upsample_features(image, model_option):
    # Image preprocessing
    input_size = 224
    transform = T.Compose([
        T.Resize(input_size),
        T.CenterCrop((input_size, input_size)),
        T.ToTensor(),
        norm
    ])
    image_tensor = transform(image).unsqueeze(0).cuda()

    # Load the selected model
    upsampler = models[model_option].cuda()
    hr_feats = upsampler(image_tensor)
    lr_feats = upsampler.model(image_tensor)
    upsampler.cpu()

    return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])


demo = gr.Interface(fn=upsample_features,
                    inputs=[image_input, model_option],
                    outputs="plot",
                    title="Feature Upsampling Demo",
                    description="This demo allows you to upsample features of an image using selected models.",
                    examples=[
                        ["/tmp/sample_images/skate.jpg", "dino16"],
                        ["/tmp/sample_images/car.jpg", "dinov2"],
                        ["/tmp/sample_images/plant.png", "dino16"],
                    ]
                    )

demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)