move installation to top
Browse files
app.py
CHANGED
@@ -1,14 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import torchvision.transforms as T
|
4 |
-
from PIL import Image
|
5 |
-
import gradio as gr
|
6 |
-
from featup.util import norm, unnorm, pca, remove_axes
|
7 |
-
from pytorch_lightning import seed_everything
|
8 |
-
import os
|
9 |
-
import requests
|
10 |
-
import csv
|
11 |
-
import spaces
|
12 |
|
13 |
from setuptools import setup, find_packages
|
14 |
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CppExtension
|
@@ -17,31 +8,6 @@ setup(
|
|
17 |
name='featup',
|
18 |
version='0.1.2',
|
19 |
packages=find_packages(),
|
20 |
-
install_requires=[
|
21 |
-
'torch',
|
22 |
-
'kornia',
|
23 |
-
'omegaconf',
|
24 |
-
'pytorch-lightning',
|
25 |
-
'torchvision',
|
26 |
-
'tqdm',
|
27 |
-
'torchmetrics',
|
28 |
-
'scikit-learn',
|
29 |
-
'numpy',
|
30 |
-
'matplotlib',
|
31 |
-
'timm==0.4.12',
|
32 |
-
],
|
33 |
-
author='Mark Hamilton, Stephanie Fu',
|
34 |
-
author_email='markth@mit.edu, fus@berkeley.edu',
|
35 |
-
description='Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024',
|
36 |
-
long_description=open('README.md').read(),
|
37 |
-
long_description_content_type='text/markdown',
|
38 |
-
url='https://github.com/mhamilton723/FeatUp',
|
39 |
-
classifiers=[
|
40 |
-
'Programming Language :: Python :: 3',
|
41 |
-
'License :: OSI Approved :: MIT License',
|
42 |
-
'Operating System :: OS Independent',
|
43 |
-
],
|
44 |
-
python_requires='>=3.6',
|
45 |
ext_modules=[
|
46 |
CUDAExtension(
|
47 |
'adaptive_conv_cuda_impl',
|
@@ -59,6 +25,18 @@ setup(
|
|
59 |
}
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def plot_feats(image, lr, hr):
|
64 |
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
|
|
|
1 |
+
|
2 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
from setuptools import setup, find_packages
|
5 |
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CppExtension
|
|
|
8 |
name='featup',
|
9 |
version='0.1.2',
|
10 |
packages=find_packages(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
ext_modules=[
|
12 |
CUDAExtension(
|
13 |
'adaptive_conv_cuda_impl',
|
|
|
25 |
}
|
26 |
)
|
27 |
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
import torch
|
30 |
+
import torchvision.transforms as T
|
31 |
+
from PIL import Image
|
32 |
+
import gradio as gr
|
33 |
+
from featup.util import norm, unnorm, pca, remove_axes
|
34 |
+
from pytorch_lightning import seed_everything
|
35 |
+
import os
|
36 |
+
import requests
|
37 |
+
import csv
|
38 |
+
import spaces
|
39 |
+
|
40 |
|
41 |
def plot_feats(image, lr, hr):
|
42 |
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
|