File size: 18,103 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import functools
import os
import math
import csv
import datetime
import filelock
import gradio as gr
from utils import is_gradio_version4
def get_chatbot_name(base_model, display_name, model_path_llama, inference_server='', prompt_type='', model_label_prefix='', debug=False):
#have_inference_server = inference_server not in [no_server_str, None, '']
#if not have_inference_server and prompt_type in [None, '', 'plain']:
# label_postfix = ' [Please select prompt_type in Models tab or on CLI for chat models]'
#else:
# pass
label_postfix = ''
if not debug:
inference_server = ''
else:
inference_server = ' : ' + inference_server
if base_model == 'llama':
model_path_llama = os.path.basename(model_path_llama)
if model_path_llama.endswith('?download=true'):
model_path_llama = model_path_llama.replace('?download=true', '')
label = f'{model_label_prefix} [Model: {model_path_llama}{inference_server}]'
else:
if base_model == 'mixtral-8x7b-32768':
base_model = 'groq:mixtral-8x7b-32768'
if display_name:
# so can distinguish between models in UI
base_model = display_name
label = f'{model_label_prefix} [Model: {base_model}{inference_server}]'
label += label_postfix
return label
def get_avatars(base_model, model_path_llama, inference_server=''):
if base_model == 'llama':
base_model = model_path_llama
if inference_server is None:
inference_server = ''
model_base = os.getenv('H2OGPT_MODEL_BASE', 'models/')
human_avatar = "human.jpg"
if 'h2ogpt-gm'.lower() in base_model.lower():
bot_avatar = "h2oai.png"
elif 'llava-' in base_model.lower():
bot_avatar = "llava.png"
elif 'mistralai'.lower() in base_model.lower() or \
'mistral'.lower() in base_model.lower() or \
'mixtral'.lower() in base_model.lower():
bot_avatar = "mistralai.png"
elif '01-ai/Yi-'.lower() in base_model.lower():
bot_avatar = "yi.svg"
elif 'wizard' in base_model.lower():
bot_avatar = "wizard.jpg"
elif 'openchat' in base_model.lower():
bot_avatar = "openchat.png"
elif 'vicuna' in base_model.lower():
bot_avatar = "vicuna.jpeg"
elif 'longalpaca' in base_model.lower():
bot_avatar = "longalpaca.png"
elif 'llama2-70b-chat' in base_model.lower():
bot_avatar = "meta.png"
elif 'llama2-13b-chat' in base_model.lower():
bot_avatar = "meta.png"
elif 'llama2-7b-chat' in base_model.lower():
bot_avatar = "meta.png"
elif 'llama2' in base_model.lower():
bot_avatar = "lama2.jpeg"
elif 'llama-2' in base_model.lower():
bot_avatar = "lama2.jpeg"
elif 'llama' in base_model.lower():
bot_avatar = "lama.jpeg"
elif 'openai' in base_model.lower() or 'openai' in inference_server.lower():
bot_avatar = "openai.png"
elif 'hugging' in base_model.lower():
bot_avatar = "hf-logo.png"
elif 'claude' in base_model.lower():
bot_avatar = "anthropic.jpeg"
elif 'gemini' in base_model.lower():
bot_avatar = "google.png"
else:
bot_avatar = "h2oai.png"
bot_avatar = os.path.join(model_base, bot_avatar)
human_avatar = os.path.join(model_base, human_avatar)
human_avatar = human_avatar if os.path.isfile(human_avatar) else None
bot_avatar = bot_avatar if os.path.isfile(bot_avatar) else None
return human_avatar, bot_avatar
def ratingfn1():
return 1
def ratingfn2():
return 2
def ratingfn3():
return 3
def ratingfn4():
return 4
def ratingfn5():
return 5
def submit_review(review_text, text_output, text_output2, *text_outputs1, reviews_file=None, num_model_lock=None,
do_info=True):
if reviews_file is None:
if do_info:
gr.Info('No review file')
return ''
chatbots = [text_output, text_output2] + list(text_outputs1)
last_chatbots = [x[-1] for x in chatbots if x]
now = datetime.datetime.now()
with filelock.FileLock(reviews_file + '.lock'):
with open(reviews_file, 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([review_text, *last_chatbots, now])
if do_info:
gr.Info('Review submitted!')
return ''
def make_chatbots(output_label0, output_label0_model2, **kwargs):
visible_models = kwargs['visible_models']
all_models = kwargs['all_possible_display_names']
visible_ratings = kwargs['visible_ratings']
reviews_file = kwargs['reviews_file'] or 'reviews.csv'
text_outputs = []
chat_kwargs = []
min_width = 250 if kwargs['gradio_size'] in ['small', 'large', 'medium'] else 160
for model_state_locki, model_state_lock in enumerate(kwargs['model_states']):
output_label = get_chatbot_name(model_state_lock["base_model"],
model_state_lock["display_name"],
model_state_lock['llamacpp_dict']["model_path_llama"],
model_state_lock["inference_server"],
model_state_lock["prompt_type"],
model_label_prefix=kwargs['model_label_prefix'],
debug=bool(os.environ.get('DEBUG_MODEL_LOCK', 0)))
if kwargs['avatars']:
avatar_images = get_avatars(model_state_lock["base_model"],
model_state_lock['llamacpp_dict']["model_path_llama"],
model_state_lock["inference_server"])
else:
avatar_images = None
chat_kwargs.append(dict(render_markdown=kwargs.get('render_markdown', True),
label=output_label,
show_label=kwargs.get('visible_chatbot_label', True),
elem_classes='chatsmall',
height=kwargs['height'] or 400,
min_width=min_width,
avatar_images=avatar_images,
likeable=True,
latex_delimiters=[],
show_copy_button=kwargs['show_copy_button'],
visible=kwargs['model_lock'] and (visible_models is None or
model_state_locki in visible_models or
all_models[model_state_locki] in visible_models
)))
# base view on initial visible choice
if visible_models and kwargs['model_lock_layout_based_upon_initial_visible']:
len_visible = len(visible_models)
else:
len_visible = len(kwargs['model_states'])
if kwargs['model_lock_columns'] == -1:
kwargs['model_lock_columns'] = len_visible
if kwargs['model_lock_columns'] is None:
kwargs['model_lock_columns'] = 3
ncols = kwargs['model_lock_columns']
if kwargs['model_states'] == 0:
nrows = 0
else:
nrows = math.ceil(len_visible / kwargs['model_lock_columns'])
if kwargs['model_lock_columns'] == 0:
# not using model_lock
pass
elif nrows <= 1:
with gr.Row():
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']):
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows == kwargs['model_states']:
with gr.Row():
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']):
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows > 0:
len_chatbots = len(kwargs['model_states'])
nrows = math.ceil(len_chatbots / kwargs['model_lock_columns'])
for nrowi in range(nrows):
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < nrowi * len_chatbots / nrows or mii >= (1 + nrowi) * len_chatbots / nrows:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
if len(kwargs['model_states']) > 0:
assert len(text_outputs) == len(kwargs['model_states'])
if kwargs['avatars']:
avatar_images = get_avatars(kwargs["base_model"], kwargs['llamacpp_dict']["model_path_llama"],
kwargs["inference_server"])
else:
avatar_images = None
no_model_lock_chat_kwargs = dict(render_markdown=kwargs.get('render_markdown', True),
show_label=kwargs.get('visible_chatbot_label', True),
elem_classes='chatsmall',
height=kwargs['height'] or 400,
min_width=min_width,
show_copy_button=kwargs['show_copy_button'],
avatar_images=avatar_images,
latex_delimiters=[],
)
with gr.Row():
text_output = gr.Chatbot(label=output_label0,
visible=not kwargs['model_lock'],
**no_model_lock_chat_kwargs,
likeable=True,
)
text_output2 = gr.Chatbot(label=output_label0_model2,
visible=False and not kwargs['model_lock'],
**no_model_lock_chat_kwargs,
likeable=True,
)
chatbots = [text_output, text_output2] + text_outputs
with gr.Row(visible=visible_ratings):
review_textbox = gr.Textbox(visible=True, label="Review", placeholder="Type your review...", scale=4)
rating_text_output = gr.Textbox(elem_id="text_output", visible=False)
with gr.Column():
with gr.Row():
rating1 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating1", size="sm")
rating2 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating2", size="sm")
rating3 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating3", size="sm")
rating4 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating4", size="sm")
rating5 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating5", size="sm")
review_js1 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js2 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js3 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js4 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js5 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
}
"""
if is_gradio_version4:
rating1.click(ratingfn1, outputs=rating_text_output, js=review_js1)
rating2.click(ratingfn2, outputs=rating_text_output, js=review_js2)
rating3.click(ratingfn3, outputs=rating_text_output, js=review_js3)
rating4.click(ratingfn4, outputs=rating_text_output, js=review_js4)
rating5.click(ratingfn5, outputs=rating_text_output, js=review_js5)
else:
rating1.click(ratingfn1, outputs=rating_text_output, _js=review_js1)
rating2.click(ratingfn2, outputs=rating_text_output, _js=review_js2)
rating3.click(ratingfn3, outputs=rating_text_output, _js=review_js3)
rating4.click(ratingfn4, outputs=rating_text_output, _js=review_js4)
rating5.click(ratingfn5, outputs=rating_text_output, _js=review_js5)
submit_review_btn = gr.Button("Submit Review", scale=1)
submit_review_func = functools.partial(submit_review,
reviews_file=reviews_file if reviews_file else None,
num_model_lock=len(chatbots))
submit_review_btn.click(submit_review_func,
inputs=[review_textbox, rating_text_output,
text_output, text_output2] + text_outputs,
outputs=review_textbox)
# set likeable method
def on_like(like_data: gr.LikeData):
submit_review(str(like_data.liked) + "," + str(like_data.target.label), *tuple([['', like_data.value], []]),
reviews_file=reviews_file, num_model_lock=len(chatbots), do_info=False)
for chatbot in chatbots:
chatbot.like(on_like)
return text_output, text_output2, text_outputs
|