File size: 9,765 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import copy
import torch
from evaluate_params import eval_func_param_names, input_args_list
from gen import evaluate, check_locals
from prompter import non_hf_types
from utils import clear_torch_cache, NullContext, get_kwargs
def run_cli( # for local function:
base_model=None, lora_weights=None, inference_server=None, regenerate_clients=None,
regenerate_gradio_clients=None, validate_clients=None, fail_if_invalid_client=None,
debug=None,
examples=None, memory_restriction_level=None,
# evaluate kwargs
n_jobs=None, llamacpp_path=None, llamacpp_dict=None, exllama_dict=None, gptq_dict=None, attention_sinks=None,
sink_dict=None, truncation_generation=None,
hf_model_dict=None,
force_seq2seq_type=None, force_t5_type=None,
load_exllama=None,
force_streaming_on_to_handle_timeouts=None,
use_pymupdf=None,
use_unstructured_pdf=None,
use_pypdf=None,
enable_pdf_ocr=None,
enable_pdf_doctr=None,
enable_image=None,
visible_image_models=None,
image_size=None,
image_quality=None,
image_guidance_scale=None,
image_num_inference_steps=None,
try_pdf_as_html=None,
# for some evaluate args
load_awq='',
stream_output=None, enable_caching=None, async_output=None, num_async=None, stream_map=None,
prompt_type=None, prompt_dict=None, chat_template=None, system_prompt=None,
temperature=None, top_p=None, top_k=None, penalty_alpha=None, num_beams=None,
max_new_tokens=None, min_new_tokens=None, early_stopping=None, max_time=None, repetition_penalty=None,
num_return_sequences=None, do_sample=None, seed=None, chat=None,
langchain_mode=None, langchain_action=None, langchain_agents=None,
document_subset=None, document_choice=None,
document_source_substrings=None,
document_source_substrings_op=None,
document_content_substrings=None,
document_content_substrings_op=None,
top_k_docs=None, chunk=None, chunk_size=None,
pre_prompt_query=None, prompt_query=None,
pre_prompt_summary=None, prompt_summary=None, hyde_llm_prompt=None,
all_docs_start_prompt=None,
all_docs_finish_prompt=None,
user_prompt_for_fake_system_prompt=None,
json_object_prompt=None,
json_object_prompt_simpler=None,
json_code_prompt=None,
json_code_prompt_if_no_schema=None,
json_schema_instruction=None,
json_preserve_system_prompt=None,
json_object_post_prompt_reminder=None,
json_code_post_prompt_reminder=None,
json_code2_post_prompt_reminder=None,
image_audio_loaders=None,
pdf_loaders=None,
url_loaders=None,
jq_schema=None,
extract_frames=None,
extract_frames0=None,
guided_whitespace_pattern0=None,
metadata_in_context0=None,
llava_prompt=None,
visible_models=None,
h2ogpt_key=None,
add_search_to_context=None,
chat_conversation=None,
text_context_list=None,
docs_ordering_type=None,
min_max_new_tokens=None,
max_input_tokens=None,
max_total_input_tokens=None,
docs_token_handling=None,
docs_joiner=None,
hyde_level=None,
hyde_template=None,
hyde_show_only_final=None,
hyde_show_intermediate_in_accordion=None,
map_reduce_show_intermediate_in_accordion=None,
doc_json_mode=None,
metadata_in_context=None,
chatbot_role=None,
speaker=None,
tts_language=None,
tts_speed=None,
image_file=None,
image_control=None,
images_num_max=None,
image_resolution=None,
image_format=None,
rotate_align_resize_image=None,
video_frame_period=None,
image_batch_image_prompt=None,
image_batch_final_prompt=None,
image_batch_stream=None,
visible_vision_models=None,
video_file=None,
response_format=None,
guided_json=None,
guided_regex=None,
guided_choice=None,
guided_grammar=None,
guided_whitespace_pattern=None,
client_metadata=None,
# for evaluate kwargs
captions_model=None,
caption_loader=None,
doctr_loader=None,
pix2struct_loader=None,
llava_model=None,
image_model_dict=None,
asr_model=None,
asr_loader=None,
image_audio_loaders_options0=None,
pdf_loaders_options0=None,
url_loaders_options0=None,
jq_schema0=None,
keep_sources_in_context=None,
gradio_errors_to_chatbot=None,
allow_chat_system_prompt=None,
src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None,
model_state0=None,
use_auth_token=None,
trust_remote_code=None,
score_model_state0=None,
max_max_new_tokens=None,
is_public=None,
max_max_time=None,
raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None,
my_db_state0=None, selection_docs_state0=None, dbs=None, langchain_modes=None, langchain_mode_paths=None,
detect_user_path_changes_every_query=None,
use_openai_embedding=None, use_openai_model=None,
hf_embedding_model=None, migrate_embedding_model=None,
cut_distance=None,
answer_with_sources=None,
append_sources_to_answer=None,
append_sources_to_chat=None,
sources_show_text_in_accordion=None,
top_k_docs_max_show=None,
show_link_in_sources=None,
langchain_instruct_mode=None,
add_chat_history_to_context=None,
context=None, iinput=None,
db_type=None, first_para=None, text_limit=None, verbose=None,
gradio=None, cli=None,
use_cache=None,
auto_reduce_chunks=None, max_chunks=None, headsize=None,
model_lock=None, force_langchain_evaluate=None,
model_state_none=None,
# unique to this function:
cli_loop=None,
):
# avoid noisy command line outputs
import warnings
warnings.filterwarnings("ignore")
import logging
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
from_ui = False
check_locals(**locals().copy())
score_model = "" # FIXME: For now, so user doesn't have to pass
verifier_server = "" # FIXME: For now, so user doesn't have to pass
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0
device = 'cpu' if n_gpus == 0 else 'cuda'
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
with context_class(device):
from functools import partial
requests_state0 = {}
roles_state0 = None
args = (None, my_db_state0, selection_docs_state0, requests_state0, roles_state0)
assert len(args) == len(input_args_list)
example1 = examples[-1] # pick reference example
all_generations = []
all_sources = []
if not context:
context = ''
if chat_conversation is None:
chat_conversation = []
fun = partial(evaluate,
*args,
**get_kwargs(evaluate, exclude_names=input_args_list + eval_func_param_names,
**locals().copy()))
while True:
clear_torch_cache(allow_skip=True)
instruction = input("\nEnter an instruction: ")
if instruction == "exit":
break
eval_vars = copy.deepcopy(example1)
eval_vars[eval_func_param_names.index('instruction')] = \
eval_vars[eval_func_param_names.index('instruction_nochat')] = instruction
eval_vars[eval_func_param_names.index('iinput')] = \
eval_vars[eval_func_param_names.index('iinput_nochat')] = iinput
eval_vars[eval_func_param_names.index('context')] = context
# grab other parameters, like langchain_mode
for k in eval_func_param_names:
if k in locals().copy():
eval_vars[eval_func_param_names.index(k)] = locals().copy()[k]
gener = fun(*tuple(eval_vars))
outr = ''
res_old = ''
for gen_output in gener:
res = gen_output['response']
sources = gen_output.get('sources', 'Failure of Generation')
if base_model not in non_hf_types or base_model in ['llama']:
if not stream_output:
print(res)
else:
# then stream output for gradio that has full output each generation, so need here to show only new chars
diff = res[len(res_old):]
print(diff, end='', flush=True)
res_old = res
outr = res # don't accumulate
else:
outr += res # just is one thing
if sources:
# show sources at end after model itself had streamed to std rest of response
print('\n\n' + str(sources), flush=True)
all_generations.append(outr + '\n')
all_sources.append(sources)
if not cli_loop:
break
if add_chat_history_to_context:
# for CLI keep track of conversation
chat_conversation.extend([[instruction, outr]])
return all_generations, all_sources
|