File size: 11,902 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import numpy as np
from scipy.stats import mode
from utils import have_cv2, have_pillow
from enums import images_num_max_dict
def largest_contour(contours):
""" Find the largest contour in the list. """
import cv2
largest_area = 0
largest_contour = None
for contour in contours:
area = cv2.contourArea(contour)
if area > largest_area:
largest_area = area
largest_contour = contour
return largest_contour
def is_contour_acceptable(contour, image, size_threshold=0.1, aspect_ratio_range=(0.5, 2), rotation_threshold=30):
import cv2
""" Check if the contour is acceptable based on size, aspect ratio, and rotation. """
# Size check
image_area = image.shape[0] * image.shape[1]
contour_area = cv2.contourArea(contour)
if contour_area / image_area < size_threshold or contour_area / image_area > 1 - size_threshold:
return False
# Aspect ratio check
x, y, w, h = cv2.boundingRect(contour)
aspect_ratio = w / h
if aspect_ratio < aspect_ratio_range[0] or aspect_ratio > aspect_ratio_range[1]:
return False
# Rotation check
_, _, angle = cv2.minAreaRect(contour)
if angle > rotation_threshold:
return False
return True
def file_to_cv2(img_file):
import cv2
image = cv2.imread(img_file)
assert os.path.isfile(img_file), '%s not found' % img_file
if image is None:
# e.g. small BW gif gridnumbers.gif
from PIL import Image
import numpy as np
pil_image = Image.open(img_file).convert('RGB')
pil_image_file = img_file + '.pil.png'
pil_image.save(pil_image_file)
image = cv2.imread(pil_image_file)
# open_cv_image = np.array(pil_image, dtype=np.unit8)
## Convert RGB to BGR
# image = open_cv_image[:, :, ::-1].copy()
# Check if image is loaded
if image is None:
raise ValueError("Error: Image for %s not made." % img_file)
return image
def align_image(img_file):
import cv2
from imutils.perspective import four_point_transform
try:
# Load the image
# img_file = '/home/jon/Downloads/fastfood.jpg'
# img_file = "/home/jon/Documents/reciept.jpg"
image = file_to_cv2(img_file)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# Edge detection
edges = cv2.Canny(blur, 50, 150, apertureSize=3)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Find the largest contour
largest = largest_contour(contours)
if largest is not None and is_contour_acceptable(largest, image):
# Approximate the contour to a polygon
peri = cv2.arcLength(largest, True)
approx = cv2.approxPolyDP(largest, 0.02 * peri, True)
# If the approximated contour has four points, assume it is a quadrilateral
if len(approx) == 4:
warped = four_point_transform(image, approx.reshape(4, 2))
out_file = img_file + "_aligned.jpg"
cv2.imwrite(out_file, warped)
return out_file
else:
print("Contour is not a quadrilateral.")
return img_file
else:
print("No acceptable contours found.")
return img_file
except Exception as e:
print("Error in align_image:", e, flush=True)
return img_file
def correct_rotation(img_file, border_size=50):
import cv2
# Function to rotate the image to the correct orientation
# Load the image
image = file_to_cv2(img_file)
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect edges in the image
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# Detect points that form a line using HoughLinesP
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=80, minLineLength=100, maxLineGap=10)
if lines is None or len(lines) == 0:
return img_file
# Initialize list of angles
angles = []
# Loop over the lines and compute the angle of each line
for line in lines:
x1, y1, x2, y2 = line[0]
angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
angles.append(angle)
# Calculate the most frequent angle in the image
most_frequent_angle = mode(np.round(angles)).mode
# Assuming the receipt is horizontal, the text should be near 0 or -180/180 degrees
# We need to bring the angle to the range (-45, 45) to minimize rotation and keep the text upright
if most_frequent_angle < -45:
most_frequent_angle += 90
elif most_frequent_angle > 45:
most_frequent_angle -= 90
# Rotate the original image by the most frequent angle to correct its orientation
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, most_frequent_angle, 1.0)
corrected_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
# Crop the image (removing specified pixels from each border) after rotation
remove_border_final = False
if remove_border_final:
cropped_rotated_image = corrected_image[border_size:-border_size, border_size:-border_size]
else:
cropped_rotated_image = corrected_image
# Save the corrected image
out_file = img_file + "_rotated.jpg"
cv2.imwrite(out_file, cropped_rotated_image)
return out_file
def pad_resize_image_file(img_file, relaxed_resize=False):
import cv2
image = file_to_cv2(img_file)
if relaxed_resize:
postfix = "_resized.png"
image = resize_image(image, return_none_if_no_change=True, max_dimension=2048)
else:
postfix = "_pad_resized.png"
image = pad_resize_image(image, return_none_if_no_change=True)
if image is None:
new_file = img_file
else:
new_file = img_file + postfix
cv2.imwrite(new_file, image)
return new_file
def resize_image(image, return_none_if_no_change=True, max_dimension=2048):
import cv2
height, width = image.shape[:2]
# Calculate the scaling factor
if max(height, width) > max_dimension:
if height > width:
scale_factor = max_dimension / height
else:
scale_factor = max_dimension / width
# Compute new dimensions
new_dimensions = (int(width * scale_factor), int(height * scale_factor))
# Resize the image
resized_image = cv2.resize(image, new_dimensions, interpolation=cv2.INTER_AREA)
else:
# No resizing needed if the image is already within the desired dimensions
if return_none_if_no_change:
return None
resized_image = image
return resized_image
def pad_resize_image(image, return_none_if_no_change=False, max_dimension=1024):
import cv2
L = max_dimension
H = max_dimension
# Load the image
Li, Hi = image.shape[1], image.shape[0]
if Li == L and Hi == H:
if return_none_if_no_change:
return None
else:
return image
# Calculate the aspect ratio
aspect_ratio_original = Li / Hi
aspect_ratio_final = L / H
# Check the original size and determine the processing needed
if Li < L and Hi < H:
# Padding
padding_x = (L - Li) // 2
padding_y = (H - Hi) // 2
image = cv2.copyMakeBorder(image, padding_y, padding_y, padding_x, padding_x, cv2.BORDER_CONSTANT,
value=[0, 0, 0])
elif Li > L and Hi > H:
# Resizing
if aspect_ratio_original < aspect_ratio_final:
# The image is taller than the target aspect ratio
new_height = H
new_width = int(H * aspect_ratio_original)
else:
# The image is wider than the target aspect ratio
new_width = L
new_height = int(L / aspect_ratio_original)
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
else:
# Intermediate case, resize without cropping
if aspect_ratio_original < aspect_ratio_final:
# The image is taller than the target aspect ratio
new_height = H
new_width = int(H * aspect_ratio_original)
else:
# The image is wider than the target aspect ratio
new_width = L
new_height = int(L / aspect_ratio_original)
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
padding_x = (L - new_width) // 2
padding_y = (H - new_height) // 2
image = cv2.copyMakeBorder(image, padding_y, padding_y, padding_x, padding_x, cv2.BORDER_CONSTANT,
value=[0, 0, 0])
# debug, to see effect of pad-resize
# import cv2
# cv2.imwrite('new1.png', image)
return image
def fix_image_file(file, do_align=False, do_rotate=False, do_pad=False, relaxed_resize=False):
# always try to fix rotation/alignment since OCR better etc. in that case
if have_cv2:
if do_align:
aligned_image = align_image(file)
if aligned_image is not None and os.path.isfile(aligned_image):
file = aligned_image
if do_rotate:
derotated_image = correct_rotation(file)
if derotated_image is not None and os.path.isfile(derotated_image):
file = derotated_image
if do_pad or relaxed_resize:
file = pad_resize_image_file(file, relaxed_resize=relaxed_resize)
return file
def get_image_types():
if have_pillow:
from PIL import Image
exts = Image.registered_extensions()
image_types0 = {ex for ex, f in exts.items() if f in Image.OPEN}
image_types0 = sorted(image_types0)
image_types0 = [x[1:] if x.startswith('.') else x for x in image_types0]
else:
image_types0 = []
return image_types0
def get_image_file(image_file, image_control, document_choice, base_model=None, images_num_max=None,
image_resolution=None, image_format=None,
convert=False,
str_bytes=True):
if image_control is not None:
img_file = image_control
elif image_file is not None:
img_file = image_file
else:
image_types = get_image_types()
img_file = [x for x in document_choice if
any(x.endswith('.' + y) for y in image_types)] if document_choice else []
if not isinstance(img_file, list):
img_file = [img_file]
if isinstance(img_file, list) and not img_file:
img_file = [None]
final_img_files = []
for img_file1 in img_file:
if convert:
if img_file1 and os.path.isfile(img_file1):
from vision.utils_vision import img_to_base64
img_file1 = img_to_base64(img_file1, str_bytes=str_bytes, resolution=image_resolution,
output_format=image_format)
elif isinstance(img_file1, str):
# assume already bytes
img_file1 = img_file1
else:
img_file1 = None
final_img_files.append(img_file1)
final_img_files = [x for x in final_img_files if x]
if base_model and images_num_max == -1:
images_num_max = images_num_max_dict.get(base_model, 1)
if base_model and images_num_max is None:
images_num_max = images_num_max_dict.get(base_model, 1) or 1
if images_num_max is None:
images_num_max = len(final_img_files)
if images_num_max <= -1:
images_num_max = -images_num_max - 1
final_img_files = final_img_files[:images_num_max]
return final_img_files
|