|
import functools |
|
import typing |
|
|
|
import aiohttp |
|
from langchain.docstore.document import Document |
|
from langchain_community.utilities import SerpAPIWrapper |
|
|
|
from utils_langchain import _chunk_sources, add_parser, _add_meta |
|
from urllib.parse import urlparse |
|
|
|
|
|
class H2OSerpAPIWrapper(SerpAPIWrapper): |
|
def get_search_documents(self, query, |
|
query_action=True, |
|
chunk=True, chunk_size=512, |
|
db_type='chroma', |
|
headsize=50, |
|
top_k_docs=-1): |
|
docs = self.run(query, headsize) |
|
|
|
chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type) |
|
docs = chunk_sources(docs) |
|
|
|
|
|
if query_action: |
|
docs = [x for x in docs if x.metadata['chunk_id'] >= 0] |
|
else: |
|
docs = [x for x in docs if x.metadata['chunk_id'] == -1] |
|
|
|
|
|
delta = 0.05 |
|
[x.metadata.update(score=0.1 + delta * x.metadata['chunk_id'] if x.metadata['chunk_id'] >= 0 else -1) for x in |
|
docs] |
|
|
|
|
|
if top_k_docs >= 1: |
|
top_k_docs = max(top_k_docs, len(docs)) |
|
|
|
return docs, top_k_docs |
|
|
|
async def arun(self, query: str, headsize: int, **kwargs: typing.Any) -> list: |
|
"""Run query through SerpAPI and parse result async.""" |
|
return self._process_response(await self.aresults(query), query, headsize) |
|
|
|
def run(self, query: str, headsize: int, **kwargs: typing.Any) -> list: |
|
"""Run query through SerpAPI and parse result.""" |
|
return self._process_response(self.results(query), query, headsize) |
|
|
|
@staticmethod |
|
def _process_response(res: dict, query: str, headsize: int) -> list: |
|
try: |
|
return H2OSerpAPIWrapper.__process_response(res, query, headsize) |
|
except Exception as e: |
|
print("SERP search failed: %s" % str(e)) |
|
return [] |
|
|
|
@staticmethod |
|
def __process_response(res: dict, query: str, headsize: int) -> list: |
|
docs = [] |
|
|
|
res1 = SerpAPIWrapper._process_response(res) |
|
if res1: |
|
if isinstance(res1, str) and not res1.startswith('['): |
|
docs += [Document(page_content='Web search result %s: ' % len(docs) + res1, |
|
metadata=dict(source='Web Search %s for %s' % (len(docs), query), score=0.0))] |
|
elif isinstance(res1, list): |
|
for x in res1: |
|
date = '' |
|
content = '' |
|
if 'source' in x: |
|
source = x['source'] |
|
content += '%s says' % source |
|
else: |
|
content = 'Web search result %s: ' % len(docs) |
|
if 'date' in x: |
|
date = x['date'] |
|
content += ' %s' % date |
|
if 'title' in x: |
|
content += ': %s' % x['title'] |
|
if 'snippet' in x: |
|
content += ': %s' % x['snippet'] |
|
if 'link' in x: |
|
link = x['link'] |
|
domain = urlparse(link).netloc |
|
font_size = 2 |
|
source_name = domain |
|
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % ( |
|
font_size, link, source_name) |
|
source = 'Web Search %s' % len(docs) + \ |
|
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content) |
|
if date: |
|
content += ' around %s' % date |
|
content += ' according to %s' % domain |
|
else: |
|
source = 'Web Search %s for %s' % (len(docs), query) |
|
docs += [Document(page_content=content, metadata=dict(source=source, score=0.0))] |
|
|
|
if "knowledge_graph" in res.keys(): |
|
knowledge_graph = res["knowledge_graph"] |
|
title = knowledge_graph["title"] if "title" in knowledge_graph else "" |
|
if "description" in knowledge_graph.keys(): |
|
docs += [Document(page_content='Web search result %s: ' % len(docs) + knowledge_graph["description"], |
|
metadata=dict(source='Web Search %s with knowledge_graph description for %s' % ( |
|
len(docs), query), score=0.0))] |
|
for key, value in knowledge_graph.items(): |
|
if ( |
|
type(key) == str |
|
and type(value) == str |
|
and key not in ["title", "description"] |
|
and not key.endswith("_stick") |
|
and not key.endswith("_link") |
|
and not value.startswith("http") |
|
): |
|
docs += [Document(page_content='Web search result %s: ' % len(docs) + f"{title} {key}: {value}.", |
|
metadata=dict( |
|
source='Web Search %s with knowledge_graph for %s' % (len(docs), query), |
|
score=0.0))] |
|
if "organic_results" in res.keys(): |
|
for org_res in res["organic_results"]: |
|
keys_to_try = ['snippet', 'snippet_highlighted_words', 'rich_snippet', 'rich_snippet_table', 'link'] |
|
for key in keys_to_try: |
|
if key in org_res.keys(): |
|
date = '' |
|
domain = '' |
|
link = '' |
|
snippet1 = '' |
|
if key != 'link': |
|
snippet1 = org_res[key] |
|
if 'date' in org_res.keys(): |
|
date = org_res['date'] |
|
snippet1 += ' on %s' % date |
|
else: |
|
date = 'unknown date' |
|
if 'link' in org_res.keys(): |
|
link = org_res['link'] |
|
domain = urlparse(link).netloc |
|
if key == 'link': |
|
|
|
snippet1 += ' Link at %s: <a href="%s">%s</a>' % (domain, link, domain) |
|
else: |
|
snippet1 += ' according to %s' % domain |
|
if snippet1: |
|
font_size = 2 |
|
source_name = domain |
|
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % ( |
|
font_size, link, source_name) |
|
source = 'Web Search %s' % len(docs) + \ |
|
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content) |
|
domain_simple = domain.replace('www.', '').replace('.com', '') |
|
snippet1 = '%s says on %s: %s' % (domain_simple, date, snippet1) |
|
docs += [Document(page_content=snippet1, metadata=dict(source=source), score=0.0)] |
|
break |
|
if "buying_guide" in res.keys(): |
|
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["buying_guide"], |
|
metadata=dict(source='Web Search %s with buying_guide for %s' % (len(docs), query)), |
|
score=0.0)] |
|
if "local_results" in res.keys() and "places" in res["local_results"].keys(): |
|
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["local_results"]["places"], |
|
metadata=dict( |
|
source='Web Search %s with local_results_places for %s' % (len(docs), query)), |
|
score=0.0)] |
|
|
|
|
|
add_meta = functools.partial(_add_meta, headsize=headsize, parser='SERPAPI') |
|
add_meta(docs, query) |
|
|
|
return docs |
|
|
|
def results(self, query: str) -> dict: |
|
|
|
"""Run query through SerpAPI and return the raw result.""" |
|
params = self.get_params(query) |
|
search = self.search_engine(params) |
|
res = search.get_dict() |
|
return res |
|
|