Spaces:
Runtime error
Runtime error
File size: 46,914 Bytes
bf70dc8 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 d45cc49 df717a9 d45cc49 df717a9 ca646d2 df717a9 ca646d2 d45cc49 ca646d2 df717a9 ca646d2 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 deaafee df717a9 d45cc49 df717a9 d45cc49 df717a9 bf70dc8 df717a9 bf70dc8 ca646d2 d45cc49 df717a9 d45cc49 df717a9 deaafee df717a9 d45cc49 df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 b613fcb df717a9 ca646d2 df717a9 d45cc49 df717a9 d45cc49 deaafee d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 deaafee df717a9 deaafee df717a9 bf70dc8 df717a9 deaafee df717a9 deaafee df717a9 bf70dc8 df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 bf70dc8 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 d45cc49 df717a9 deaafee d45cc49 deaafee df717a9 deaafee df717a9 deaafee df717a9 d45cc49 df717a9 deaafee d45cc49 deaafee df717a9 deaafee df717a9 deaafee df717a9 d45cc49 df717a9 deaafee df717a9 ca646d2 deaafee df717a9 deaafee df717a9 deaafee df717a9 bf70dc8 df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 deaafee df717a9 8c8eede df717a9 b9f24c9 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 df717a9 ca646d2 d45cc49 b613fcb b68ac1e df717a9 d45cc49 df717a9 2936fbe b613fcb df717a9 ca646d2 df717a9 ca646d2 bf70dc8 df717a9 d45cc49 df717a9 bf70dc8 ca646d2 6ec50c7 d45cc49 bf70dc8 d45cc49 df717a9 d45cc49 df717a9 d45cc49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 |
import os
import time
import hashlib
import logging
import datetime
import csv
import threading
import re
from urllib.parse import urlparse
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import (
TimeoutException,
NoSuchElementException,
StaleElementReferenceException,
)
from webdriver_manager.chrome import ChromeDriverManager
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import gradio as gr
import xml.etree.ElementTree as ET
import torch
import mysql.connector
from mysql.connector import errorcode, pooling
from dotenv import load_dotenv
import spacy
import unittest
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Initialize spaCy
nlp = spacy.load("en_core_web_sm")
# Define constants
DEFAULT_FILE_PATH = "scraped_data"
PURPOSE = (
"You go to Culvers sites, you continuously seek changes on them since your last observation. "
"Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
)
# Global variables for task management
HISTORY = []
CURRENT_TASK = None
STOP_THREADS = False # Flag to stop scraping threads
# Database Pooling Configuration
DB_POOL_NAME = "mypool"
DB_POOL_SIZE = 5 # Adjust based on expected load
try:
dbconfig = {
"host": os.getenv("DB_HOST"),
"user": os.getenv("DB_USER"),
"password": os.getenv("DB_PASSWORD"),
"database": os.getenv("DB_NAME"),
}
connection_pool = mysql.connector.pooling.MySQLConnectionPool(
pool_name=DB_POOL_NAME,
pool_size=DB_POOL_SIZE,
pool_reset_session=True,
**dbconfig
)
logging.info("Database connection pool created successfully.")
except mysql.connector.Error as err:
logging.warning(f"Database connection pool creation failed: {err}")
connection_pool = None # Will use CSV as fallback
# Function to get a database connection from the pool
def get_db_connection():
"""
Retrieves a connection from the pool. Returns None if pool is not available.
"""
if connection_pool:
try:
connection = connection_pool.get_connection()
if connection.is_connected():
return connection
except mysql.connector.Error as err:
logging.error(f"Error getting connection from pool: {err}")
return None
# Initialize Database: Create tables and indexes
def initialize_database():
"""
Initializes the database by creating necessary tables and indexes if they do not exist.
"""
connection = get_db_connection()
if connection is None:
logging.info("Database initialization skipped. Using CSV storage.")
return
cursor = connection.cursor()
try:
# Create table for scraped data
create_scraped_data_table = """
CREATE TABLE IF NOT EXISTS scraped_data (
id INT AUTO_INCREMENT PRIMARY KEY,
url VARCHAR(255) NOT NULL,
content_hash VARCHAR(64) NOT NULL,
change_detected DATETIME NOT NULL
)
"""
cursor.execute(create_scraped_data_table)
logging.info("Table 'scraped_data' is ready.")
# Create indexes for performance
create_index_url = "CREATE INDEX IF NOT EXISTS idx_url ON scraped_data(url)"
create_index_change = "CREATE INDEX IF NOT EXISTS idx_change_detected ON scraped_data(change_detected)"
cursor.execute(create_index_url)
cursor.execute(create_index_change)
logging.info("Indexes on 'url' and 'change_detected' columns created.")
# Create table for action logs
create_action_logs_table = """
CREATE TABLE IF NOT EXISTS action_logs (
id INT AUTO_INCREMENT PRIMARY KEY,
action VARCHAR(255) NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
cursor.execute(create_action_logs_table)
logging.info("Table 'action_logs' is ready.")
except mysql.connector.Error as err:
logging.error(f"Error initializing database: {err}")
finally:
cursor.close()
connection.close()
logging.info("Database initialization complete.")
# Function to create WebDriver
def create_driver(options: Options) -> webdriver.Chrome:
"""
Initializes and returns a Selenium Chrome WebDriver instance.
"""
try:
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=options
)
logging.info("ChromeDriver initialized successfully.")
return driver
except Exception as exception:
logging.error(f"Error initializing ChromeDriver: {exception}")
return None
# Function to log changes to CSV
def log_to_csv(storage_location: str, url: str, content_hash: str, change_detected: str):
"""
Logs the change to a CSV file in the storage_location.
"""
try:
os.makedirs(storage_location, exist_ok=True)
csv_file_path = os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv")
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["date", "time", "url", "content_hash", "change"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"date": change_detected.split()[0],
"time": change_detected.split()[1],
"url": url,
"content_hash": content_hash,
"change": "Content changed",
}
)
logging.info(f"Change detected at {url} on {change_detected} and logged to CSV.")
except Exception as e:
logging.error(f"Error logging data to CSV: {e}")
# Function to get initial observation
def get_initial_observation(
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None
) -> str:
"""
Retrieves the initial content from the URL and returns its MD5 hash.
"""
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
initial_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
initial_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
initial_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
initial_content = [element.get_attribute("src") for element in elements]
else:
initial_content = driver.page_source
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
logging.info(f"Initial hash for {url}: {initial_hash}")
return initial_hash
except Exception as exception:
logging.error(f"Error accessing {url}: {exception}")
return None
# Function to monitor URLs for changes
def monitor_urls(
storage_location: str,
urls: list,
scrape_interval: int,
content_type: str,
selector: str = None,
progress: gr.Progress = None
):
"""
Monitors the specified URLs for changes and logs any detected changes to the database or CSV.
"""
global HISTORY, STOP_THREADS
previous_hashes = {url: "" for url in urls}
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
logging.error("WebDriver could not be initialized. Exiting monitor.")
return
try:
while not STOP_THREADS:
for url in urls:
if STOP_THREADS:
break
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
current_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
current_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
current_content = [element.get_attribute("src") for element in elements]
else:
current_content = driver.page_source
current_hash = hashlib.md5(str(current_content).encode("utf-8")).hexdigest()
if current_hash != previous_hashes[url]:
previous_hashes[url] = current_hash
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Change detected at {url} on {date_time_str}")
# Attempt to log to database
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, current_hash, date_time_str))
connection.commit()
logging.info(f"Change detected at {url} on {date_time_str} and logged to database.")
except mysql.connector.Error as err:
logging.error(f"Error inserting data into database: {err}")
# Fallback to CSV
log_to_csv(storage_location, url, current_hash, date_time_str)
finally:
cursor.close()
connection.close()
else:
# Fallback to CSV
log_to_csv(storage_location, url, current_hash, date_time_str)
# Update progress
if progress:
progress(1)
except (
NoSuchElementException,
StaleElementReferenceException,
TimeoutException,
Exception,
) as e:
logging.error(f"Error accessing {url}: {e}")
if progress:
progress(1)
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
finally:
driver.quit()
logging.info("ChromeDriver session ended.")
# Function to start scraping
def start_scraping(
storage_location: str,
urls: str,
scrape_interval: int,
content_type: str,
selector: str = None,
progress: gr.Progress = None
) -> str:
"""
Starts the scraping process in a separate thread with progress indication.
"""
global CURRENT_TASK, HISTORY, STOP_THREADS
if STOP_THREADS:
STOP_THREADS = False # Reset the flag if previously stopped
url_list = [url.strip() for url in urls.split(",") if url.strip()]
CURRENT_TASK = f"Monitoring URLs: {', '.join(url_list)}"
HISTORY.append(f"Task started: {CURRENT_TASK}")
logging.info(f"Task started: {CURRENT_TASK}")
# Initialize database tables
initialize_database()
# Log initial observations
def log_initial_observations():
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
return
for url in url_list:
if STOP_THREADS:
break
try:
initial_hash = get_initial_observation(driver, url, content_type, selector)
if initial_hash:
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
# Attempt to log to database
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, initial_hash, date_time_str))
connection.commit()
logging.info(f"Initial observation logged for {url} in database.")
except mysql.connector.Error as err:
logging.error(f"Error inserting initial observation into database: {err}")
# Fallback to CSV
log_to_csv(storage_location, url, initial_hash, date_time_str)
finally:
cursor.close()
connection.close()
else:
# Fallback to CSV
log_to_csv(storage_location, url, initial_hash, date_time_str)
except Exception as e:
HISTORY.append(f"Error accessing {url}: {e}")
logging.error(f"Error accessing {url}: {e}")
driver.quit()
# Start logging initial observations
initial_thread = threading.Thread(target=log_initial_observations, daemon=True)
initial_thread.start()
# Start the monitoring thread with progress
monitor_thread = threading.Thread(
target=monitor_urls,
args=(storage_location, url_list, scrape_interval, content_type, selector, progress),
daemon=True,
)
monitor_thread.start()
logging.info("Started scraping thread.")
return f"Started scraping {', '.join(url_list)} every {scrape_interval} minutes."
# Function to stop scraping
def stop_scraping() -> str:
"""
Stops all ongoing scraping threads.
"""
global STOP_THREADS
STOP_THREADS = True
HISTORY.append("Scraping stopped by user.")
logging.info("Scraping stop signal sent.")
return "Scraping has been stopped."
# Function to display CSV content from MySQL or CSV
def display_csv(storage_location: str, url: str) -> str:
"""
Fetches and returns the scraped data for a given URL from the MySQL database or CSV.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No data available for the selected URL."
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df.to_string(index=False)
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Fetching data from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
return df.to_string(index=False)
else:
return "No data available."
except Exception as e:
logging.error(f"Error fetching data for {url}: {e}")
return f"Error fetching data for {url}: {e}"
# Function to generate RSS feed from MySQL or CSV data
def generate_rss_feed(storage_location: str, url: str) -> str:
"""
Generates an RSS feed for the latest changes detected on a given URL from the MySQL database or CSV.
"""
try:
connection = get_db_connection()
rss_feed = ""
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC LIMIT 10"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {urlparse(url).hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for row in results:
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['change_detected']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
str(row['change_detected']), "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
cursor.close()
connection.close()
return rss_feed
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Generating RSS feed from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path).tail(10)
if df.empty:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for _, row in df.iterrows():
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['date']} at {row['time']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
f"{row['date']} {row['time']}", "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
return rss_feed
else:
return "No data available."
except Exception as e:
logging.error(f"Error generating RSS feed for {url}: {e}")
return f"Error generating RSS feed for {url}: {e}"
# Function to parse user commands using spaCy
def parse_command(message: str) -> tuple:
"""
Parses the user message using spaCy to identify if it contains a command.
Returns the command and its parameters if found, else (None, None).
"""
doc = nlp(message.lower())
command = None
params = {}
# Define command patterns
if "filter" in message.lower():
# Example: "Filter apples, oranges in column Description"
match = re.search(r"filter\s+([\w\s,]+)\s+in\s+column\s+(\w+)", message, re.IGNORECASE)
if match:
words = [word.strip() for word in match.group(1).split(",")]
column = match.group(2)
command = "filter"
params = {"words": words, "column": column}
elif "sort" in message.lower():
# Example: "Sort Price ascending"
match = re.search(r"sort\s+(\w+)\s+(ascending|descending)", message, re.IGNORECASE)
if match:
column = match.group(1)
order = match.group(2)
command = "sort"
params = {"column": column, "order": order}
elif "export to csv as" in message.lower():
# Example: "Export to CSV as filtered_data.csv"
match = re.search(r"export\s+to\s+csv\s+as\s+([\w\-]+\.csv)", message, re.IGNORECASE)
if match:
filename = match.group(1)
command = "export"
params = {"filename": filename}
elif "log action" in message.lower():
# Example: "Log action Filtered data for specific fruits"
match = re.search(r"log\s+action\s+(.+)", message, re.IGNORECASE)
if match:
action = match.group(1)
command = "log"
params = {"action": action}
return command, params
# Function to execute parsed commands
def execute_command(command: str, params: dict) -> str:
"""
Executes the corresponding function based on the command and parameters.
"""
if command == "filter":
words = params["words"]
column = params["column"]
return filter_data(column, words)
elif command == "sort":
column = params["column"]
order = params["order"]
return sort_data(column, order)
elif command == "export":
filename = params["filename"]
return export_csv(filename)
elif command == "log":
action = params["action"]
return log_action(action)
else:
return "Unknown command."
# Data Manipulation Functions
def filter_data(column: str, words: list) -> str:
"""
Filters the scraped data to include only rows where the specified column contains the given words.
Saves the filtered data to a new CSV file.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to filter."
df = pd.DataFrame(results)
# Create a regex pattern to match any of the words
pattern = '|'.join(words)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
filtered_df = df[df[column].astype(str).str.contains(pattern, case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
timestamp = int(time.time())
filtered_csv = os.path.join(storage_location, f"filtered_data_{timestamp}.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Filtering data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to filter."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
filtered_df = df[df[column].astype(str).str.contains('|'.join(words), case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
timestamp = int(time.time())
filtered_csv = latest_csv.replace(".csv", f"_filtered_{timestamp}.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except Exception as e:
logging.error(f"Error filtering data: {e}")
return f"Error filtering data: {e}"
def sort_data(column: str, order: str) -> str:
"""
Sorts the scraped data based on the specified column and order.
Saves the sorted data to a new CSV file.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to sort."
df = pd.DataFrame(results)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
timestamp = int(time.time())
sorted_csv = os.path.join(storage_location, f"sorted_data_{column}_{order.lower()}_{timestamp}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Sorting data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to sort."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
timestamp = int(time.time())
sorted_csv = latest_csv.replace(".csv", f"_sorted_{order.lower()}_{timestamp}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except Exception as e:
logging.error(f"Error sorting data: {e}")
return f"Error sorting data: {e}"
def export_csv(filename: str) -> str:
"""
Exports the latest scraped data to a specified CSV filename.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to export."
df = pd.DataFrame(results)
export_path = os.path.join(storage_location, filename)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except mysql.connector.Error as err:
logging.error(f"Error exporting data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Exporting data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to export."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
export_path = os.path.join(storage_location, filename)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except Exception as e:
logging.error(f"Error exporting CSV: {e}")
return f"Error exporting CSV: {e}"
def log_action(action: str) -> str:
"""
Logs a custom action message to the MySQL database or CSV.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO action_logs (action)
VALUES (%s)
"""
cursor.execute(insert_query, (action,))
connection.commit()
logging.info(f"Action logged in database: {action}")
cursor.close()
connection.close()
return f"Action logged: {action}"
except mysql.connector.Error as err:
logging.error(f"Error logging action to database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Logging action to CSV.")
# Fallback to CSV
storage_location = DEFAULT_FILE_PATH
try:
os.makedirs(storage_location, exist_ok=True)
csv_file_path = os.path.join(storage_location, "action_logs.csv")
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["timestamp", "action"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"action": action,
}
)
logging.info(f"Action logged to CSV: {action}")
return f"Action logged: {action}"
except Exception as e:
logging.error(f"Error logging action to CSV: {e}")
return f"Error logging action: {e}"
except Exception as e:
logging.error(f"Error logging action: {e}")
return f"Error logging action: {e}"
# Function to get the latest CSV file based on modification time
def get_latest_csv() -> str:
"""
Retrieves the latest CSV file from the storage directory based on modification time.
"""
try:
storage_location = DEFAULT_FILE_PATH
csv_files = [f for f in os.listdir(storage_location) if f.endswith(".csv")]
if not csv_files:
return None
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
return latest_csv
except Exception as e:
logging.error(f"Error retrieving latest CSV: {e}")
return None
# Chat Response Function with Dynamic Command Handling
def respond(
message: str,
history: list,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Generates a response using the Mistral model based on the user's message and history.
Additionally, handles dynamic commands to interact with individual components.
"""
if chat_pipeline is None:
return "Error: Chat model is not loaded."
try:
# Check if the message contains a command
command, params = parse_command(message)
if command:
# Execute the corresponding function
response = execute_command(command, params)
else:
# Generate a regular response using the model
prompt = (
f"System: {system_message}\n"
f"History: {history}\n"
f"User: {message}\n"
f"Assistant:"
)
response = chat_pipeline(
prompt,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
num_return_sequences=1,
)[0]["generated_text"]
# Extract the assistant's reply
response = response.split("Assistant:")[-1].strip()
return response
except Exception as e:
logging.error(f"Error generating response: {e}")
return "Error generating response."
# Define the Gradio interface
def create_interface() -> gr.Blocks:
"""
Defines and returns the Gradio interface for the application.
"""
with gr.Blocks() as demo:
gr.Markdown("# All-in-One Scraper, Database, and RSS Feeder")
with gr.Row():
with gr.Column():
# Scraping Controls
storage_location = gr.Textbox(
value=DEFAULT_FILE_PATH, label="Storage Location"
)
urls = gr.Textbox(
label="URLs (comma separated)",
placeholder="https://example.com, https://anotherexample.com",
)
scrape_interval = gr.Slider(
minimum=1,
maximum=60,
value=5,
step=1,
label="Scrape Interval (minutes)",
)
content_type = gr.Radio(
choices=["text", "media", "both"],
value="text",
label="Content Type",
)
selector = gr.Textbox(
label="CSS Selector for Media (Optional)",
placeholder="e.g., img.main-image",
)
start_button = gr.Button("Start Scraping")
stop_button = gr.Button("Stop Scraping")
status_output = gr.Textbox(
label="Status Output", interactive=False, lines=2
)
with gr.Column():
# Chat Interface
chat_history = gr.Chatbot(label="Chat History")
with gr.Row():
message = gr.Textbox(label="Message", placeholder="Type your message here...")
system_message = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
)
response_box = gr.Textbox(label="Response", interactive=False, lines=2)
with gr.Row():
with gr.Column():
# CSV Display Controls
selected_url_csv = gr.Textbox(
label="Select URL for CSV Content",
placeholder="https://example.com",
)
csv_button = gr.Button("Display CSV Content")
csv_content_output = gr.Textbox(
label="CSV Content Output", interactive=False, lines=10
)
with gr.Column():
# RSS Feed Generation Controls
selected_url_rss = gr.Textbox(
label="Select URL for RSS Feed",
placeholder="https://example.com",
)
rss_button = gr.Button("Generate RSS Feed")
rss_output = gr.Textbox(
label="RSS Feed Output", interactive=False, lines=20
)
# Historical Data View
with gr.Row():
historical_view_url = gr.Textbox(
label="Select URL for Historical Data",
placeholder="https://example.com",
)
historical_button = gr.Button("View Historical Data")
historical_output = gr.Dataframe(
headers=["ID", "URL", "Content Hash", "Change Detected"],
label="Historical Data",
interactive=False
)
# Progress Indicator
with gr.Row():
progress = gr.Progress(label="Scraping Progress")
# Connect buttons to their respective functions
start_button.click(
fn=start_scraping,
inputs=[
storage_location,
urls,
scrape_interval,
content_type,
selector,
progress,
],
outputs=status_output,
)
stop_button.click(fn=stop_scraping, outputs=status_output)
csv_button.click(
fn=display_csv,
inputs=[storage_location, selected_url_csv],
outputs=csv_content_output,
)
rss_button.click(
fn=generate_rss_feed,
inputs=[storage_location, selected_url_rss],
outputs=rss_output,
)
historical_button.click(
fn=display_historical_data,
inputs=[storage_location, historical_view_url],
outputs=historical_output,
)
# Connect message submission to the chat interface
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
if not message_input.strip():
return history, "Please enter a message."
response = respond(
message_input,
history,
system_msg,
max_toks,
temp,
top_p_val,
)
history.append((message_input, response))
return history, response
message.submit(
update_chat,
inputs=[
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
],
outputs=[chat_history, response_box],
)
return demo
# Function to display historical data
def display_historical_data(storage_location: str, url: str):
"""
Retrieves and displays historical scraping data for a given URL.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return pd.DataFrame()
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df
except mysql.connector.Error as err:
logging.error(f"Error fetching historical data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Fetching historical data from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
return df
else:
return pd.DataFrame()
except Exception as e:
logging.error(f"Error fetching historical data for {url}: {e}")
return pd.DataFrame()
# Function to load the Mistral model
def load_model():
"""
Loads the Mistral model and tokenizer once and returns the pipeline.
"""
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1,
)
logging.info("Mistral model loaded successfully.")
return pipe
except Exception as e:
logging.error(f"Error loading Mistral model: {e}")
return None
# Load the model once at the start
chat_pipeline = load_model()
# Automated Testing using unittest
class TestApp(unittest.TestCase):
def test_parse_command_filter(self):
command = "Filter apples, oranges in column Description"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "filter")
self.assertListEqual(parsed_command[1]["words"], ["apples", "oranges"])
self.assertEqual(parsed_command[1]["column"], "Description")
def test_parse_command_sort(self):
command = "Sort Price ascending"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "sort")
self.assertEqual(parsed_command[1]["column"], "Price")
self.assertEqual(parsed_command[1]["order"], "ascending")
def test_parse_command_export(self):
command = "Export to CSV as filtered_data.csv"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "export")
self.assertEqual(parsed_command[1]["filename"], "filtered_data.csv")
def test_parse_command_log(self):
command = "Log action Filtered data for specific fruits"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "log")
self.assertEqual(parsed_command[1]["action"], "Filtered data for specific fruits")
def test_database_connection(self):
connection = get_db_connection()
# Connection may be None if not configured; adjust the test accordingly
if connection:
self.assertTrue(connection.is_connected())
connection.close()
else:
self.assertIsNone(connection)
# Main execution
if __name__ == "__main__":
# Initialize database
initialize_database()
# Create and launch Gradio interface
demo = create_interface()
demo.launch()
# Run automated tests
unittest.main(argv=[''], exit=False) |