CEEMEESEEK / agent.py
acecalisto3's picture
Update agent.py
e9a41cf verified
raw
history blame
18.2 kB
import os
import time
import hashlib
import logging
import datetime
import csv
import threading
from urllib.parse import urlparse
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import (
TimeoutException,
NoSuchElementException,
StaleElementReferenceException,
)
from webdriver_manager.chrome import ChromeDriverManager # Added import
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import feedparser
import gradio as gr
import xml.etree.ElementTree as ET
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Define constants
DEFAULT_FILE_PATH = "scraped_data"
PURPOSE = (
"You go to Culvers sites, you continuously seek changes on them since your last observation. "
"Anything new that gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
)
HISTORY = []
CURRENT_TASK = None
STOP_THREADS = False # Flag to stop scraping threads
# Function to monitor URLs for changes
def monitor_urls(storage_location, urls, scrape_interval, content_type, selector=None):
global HISTORY, STOP_THREADS
previous_hashes = {url: "" for url in urls}
options = Options()
options.add_argument("--headless") # Run Chrome in headless mode
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
try:
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=options
)
except Exception as e:
logging.error(f"Error initializing ChromeDriver: {e}")
return
try:
while not STOP_THREADS:
for url in urls:
try:
driver.get(url)
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.TAG_NAME, "body"))
) # Wait for basic page load
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located(
(By.CSS_SELECTOR, selector)
)
)
current_content = [
element.get_attribute("src") for element in elements
]
except TimeoutException:
logging.warning(
f"Timeout waiting for media elements with selector '{selector}' on {url}"
)
current_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
current_content = [element.get_attribute("src") for element in elements]
else:
current_content = driver.page_source
current_hash = hashlib.md5(
str(current_content).encode("utf-8")
).hexdigest()
if current_hash != previous_hashes[url]:
previous_hashes[url] = current_hash
date_time_str = datetime.datetime.now().strftime(
"%Y-%m-%d %H:%M:%S"
)
HISTORY.append(f"Change detected at {url} on {date_time_str}")
csv_file_path = os.path.join(
storage_location, f"{urlparse(url).hostname}_changes.csv"
)
os.makedirs(storage_location, exist_ok=True)
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["date", "time", "url", "change"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"date": date_time_str.split()[0],
"time": date_time_str.split()[1],
"url": url,
"change": "Content changed",
}
)
logging.info(f"Change detected at {url} on {date_time_str}")
except (
NoSuchElementException,
StaleElementReferenceException,
TimeoutException,
Exception,
) as e:
logging.error(f"Error accessing {url}: {e}")
time.sleep(scrape_interval * 60) # Check every scrape_interval minutes
finally:
driver.quit()
logging.info("ChromeDriver session ended.")
# Function to start scraping
def start_scraping(storage_location, urls, scrape_interval, content_type, selector=None):
global CURRENT_TASK, HISTORY, STOP_THREADS
if STOP_THREADS:
STOP_THREADS = False # Reset the flag if previously stopped
CURRENT_TASK = f"Monitoring URLs: {', '.join(urls)}"
HISTORY.append(f"Task started: {CURRENT_TASK}")
for url in urls:
# Create a folder for the URL
hostname = urlparse(url).hostname
folder_path = os.path.join(storage_location, hostname)
os.makedirs(folder_path, exist_ok=True)
# Log the initial observation
try:
options = Options()
options.add_argument("--headless") # Run Chrome in headless mode
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=options
)
driver.get(url)
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.TAG_NAME, "body"))
) # Wait for basic page load
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
initial_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located(
(By.CSS_SELECTOR, selector)
)
)
initial_content = [
element.get_attribute("src") for element in elements
]
except TimeoutException:
logging.warning(
f"Timeout waiting for media elements with selector '{selector}' on {url}"
)
initial_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
initial_content = [element.get_attribute("src") for element in elements]
else:
initial_content = driver.page_source
initial_hash = hashlib.md5(
str(initial_content).encode("utf-8")
).hexdigest()
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
initial_observation_path = os.path.join(
folder_path, f"{hostname}_initial_observation.txt"
)
with open(initial_observation_path, "w", encoding="utf-8") as file:
file.write(f"Initial observation at {url}: {initial_hash}")
logging.info(f"Initial observation logged for {url}")
except (
NoSuchElementException,
StaleElementReferenceException,
TimeoutException,
Exception,
) as e:
HISTORY.append(f"Error accessing {url}: {e}")
logging.error(f"Error accessing {url}: {e}")
finally:
driver.quit()
# Start a new thread for monitoring URLs
monitor_thread = threading.Thread(
target=monitor_urls,
args=(storage_location, urls, scrape_interval, content_type, selector),
daemon=True,
)
monitor_thread.start()
logging.info("Started scraping thread.")
return f"Started scraping {', '.join(urls)} every {scrape_interval} minutes."
# Function to stop scraping
def stop_scraping():
global STOP_THREADS
STOP_THREADS = True
HISTORY.append("Scraping stopped by user.")
logging.info("Scraping stop signal sent.")
return "Scraping has been stopped."
# Function to display CSV content
def display_csv(storage_location, url):
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
try:
with open(csv_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
logging.error(f"Error reading CSV file for {url}: {e}")
return f"Error reading CSV file for {url}: {e}"
else:
return "No data available."
# Function to generate RSS feed for a given URL
def generate_rss_feed(storage_location, url):
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
try:
# Parse the CSV file
with open(csv_path, "r", encoding="utf-8") as file:
reader = csv.DictReader(file)
changes = list(reader)
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for change in changes[-10:]: # Last 10 changes
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {change['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = change["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {change['date']} at {change['time']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
f"{change['date']} {change['time']}", "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8")
return rss_feed.decode("utf-8")
except Exception as e:
logging.error(f"Error generating RSS feed for {url}: {e}")
return f"Error generating RSS feed for {url}: {e}"
else:
return "No data available."
# Function to define the chat response function using the Mistral model
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Load the model and tokenizer once
if not hasattr(respond, "pipe"):
try:
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
respond.tokenizer = AutoTokenizer.from_pretrained(model_name)
respond.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
respond.pipe = pipeline(
"text-generation",
model=respond.model,
tokenizer=respond.tokenizer,
device=0 if torch.cuda.is_available() else -1,
)
logging.info("Model loaded successfully.")
except Exception as e:
logging.error(f"Error loading model: {e}")
return "Error loading the response model."
try:
prompt = (
f"System: {system_message}\n"
f"History: {history}\n"
f"User: {message}\n"
f"Assistant:"
)
response = respond.pipe(
prompt, max_length=max_tokens, temperature=temperature, top_p=top_p
)[0]["generated_text"]
return response
except Exception as e:
logging.error(f"Error generating response: {e}")
return "Error generating response."
# Define the Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# All-in-One Scraper, Database, and RSS Feeder")
with gr.Row():
with gr.Column():
storage_location = gr.Textbox(
value=DEFAULT_FILE_PATH, label="Storage Location"
)
urls = gr.Textbox(
label="URLs (comma separated)",
placeholder="https://example.com, https://anotherexample.com",
)
scrape_interval = gr.Slider(
minimum=1,
maximum=60,
value=5,
step=1,
label="Scrape Interval (minutes)",
)
content_type = gr.Radio(
choices=["text", "media", "both"],
value="text",
label="Content Type",
)
selector = gr.Textbox(
label="CSS Selector for Media (Optional)",
placeholder="e.g., img.main-image",
)
start_button = gr.Button("Start Scraping")
stop_button = gr.Button("Stop Scraping")
csv_output = gr.Textbox(
label="CSV Output", interactive=False, lines=2
)
with gr.Column():
chat_history = gr.Chatbot(label="Chat History")
with gr.Row():
message = gr.Textbox(label="Message", placeholder="Type your message here...")
system_message = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
)
response_box = gr.Textbox(label="Response", interactive=False, lines=2)
with gr.Row():
selected_url_csv = gr.Textbox(
label="Select URL for CSV Content",
placeholder="https://example.com",
)
csv_button = gr.Button("Display CSV Content")
csv_content_output = gr.Textbox(
label="CSV Content Output", interactive=False, lines=10
)
with gr.Row():
selected_url_rss = gr.Textbox(
label="Select URL for RSS Feed",
placeholder="https://example.com",
)
rss_button = gr.Button("Generate RSS Feed")
rss_output = gr.Textbox(
label="RSS Feed Output", interactive=False, lines=20
)
# Connect buttons to their respective functions
start_button.click(
fn=start_scraping,
inputs=[
storage_location,
gr.Textbox.value,
scrape_interval,
content_type,
selector,
],
outputs=csv_output,
)
stop_button.click(fn=stop_scraping, outputs=csv_output)
csv_button.click(
fn=display_csv,
inputs=[storage_location, selected_url_csv],
outputs=csv_content_output,
)
rss_button.click(
fn=generate_rss_feed,
inputs=[storage_location, selected_url_rss],
outputs=rss_output,
)
# Connect message submission to the chat interface
def update_chat(message, history, system_message, max_tokens, temperature, top_p):
response = respond(message, history, system_message, max_tokens, temperature, top_p)
history.append((message, response))
return history, response
message.submit(
update_chat,
inputs=[
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
],
outputs=[chat_history, response_box],
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()