acecalisto3 commited on
Commit
c811f89
1 Parent(s): 09dd92c

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +66 -0
app2.py CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
  import asyncio
2
  import gradio as gr
3
  from sqlalchemy.exc import SQLAlchemyError
@@ -8,6 +11,17 @@ import logging
8
  import os
9
  import sys
10
  from typing import List, Dict, Any
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  # Global variables for database session and engine
13
  db_session = None
@@ -52,6 +66,43 @@ async def fetch_feed_content(feed_url: str) -> Dict[str, Any]:
52
  logger.error(f"Error fetching feed content: {e}")
53
  return {}
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  # Main application that runs Gradio UI and background tasks
56
  async def main():
57
  global db_session, monitoring_task
@@ -83,6 +134,12 @@ async def main():
83
  chatbot_interface = gr.Chatbot(type='messages')
84
  message_input = gr.Textbox(placeholder="Type your message here...")
85
  send_button = gr.Button("Send")
 
 
 
 
 
 
86
  # Define button actions
87
  async def on_start_click(target_urls_str: str, storage_loc: str, feed_enabled: bool, host: str, port: str, user: str, password: str, db_name: str):
88
  global monitoring_task
@@ -98,8 +155,17 @@ async def main():
98
  return "Monitoring stopped."
99
  async def on_view_feed_click(feed_url: str):
100
  return await fetch_feed_content(feed_url)
 
 
 
 
 
 
101
  stop_button.click(on_stop_click, outputs=[status_text])
102
  view_button.click(on_view_feed_click, inputs=[feed_target_url], outputs=[feed_content])
 
 
 
103
  send_button.click(chatbot_response, inputs=[message_input, chatbot_interface], outputs=[chatbot_interface, message_input])
104
  # Set up the timer for periodic updates
105
  feed_updater = gr.Timer(interval=300)
 
1
+ Here's an enhanced version of the code with advanced features:
2
+
3
+ ```python
4
  import asyncio
5
  import gradio as gr
6
  from sqlalchemy.exc import SQLAlchemyError
 
11
  import os
12
  import sys
13
  from typing import List, Dict, Any
14
+ from datetime import datetime
15
+ from pytz import timezone
16
+ import pytz
17
+ import requests
18
+ from bs4 import BeautifulSoup
19
+ import pandas as pd
20
+ import numpy as np
21
+ import matplotlib.pyplot as plt
22
+ from sklearn.model_selection import train_test_split
23
+ from sklearn.linear_model import LinearRegression
24
+ from sklearn import metrics
25
 
26
  # Global variables for database session and engine
27
  db_session = None
 
66
  logger.error(f"Error fetching feed content: {e}")
67
  return {}
68
 
69
+ # Function to scrape website content
70
+ async def scrape_website(url: str) -> str:
71
+ try:
72
+ response = requests.get(url)
73
+ soup = BeautifulSoup(response.text, 'html.parser')
74
+ return soup.get_text()
75
+ except Exception as e:
76
+ logger.error(f"Error scraping website: {e}")
77
+ return ""
78
+
79
+ # Function to analyze website content
80
+ async def analyze_website_content(content: str) -> Dict[str, Any]:
81
+ try:
82
+ # Perform sentiment analysis using Natural Language Processing (NLP) techniques
83
+ # For simplicity, we'll use a basic sentiment analysis approach
84
+ sentiment = "Positive" if content.count("good") > content.count("bad") else "Negative"
85
+ return {'sentiment': sentiment}
86
+ except Exception as e:
87
+ logger.error(f"Error analyzing website content: {e}")
88
+ return {}
89
+
90
+ # Function to predict website traffic
91
+ async def predict_website_traffic(url: str) -> Dict[str, Any]:
92
+ try:
93
+ # Use machine learning model to predict website traffic
94
+ # For simplicity, we'll use a basic linear regression model
95
+ X = pd.DataFrame({'url': [url]})
96
+ y = pd.DataFrame({'traffic': [100]}) # Replace with actual traffic data
97
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
98
+ model = LinearRegression()
99
+ model.fit(X_train, y_train)
100
+ y_pred = model.predict(X_test)
101
+ return {'traffic': y_pred[0]}
102
+ except Exception as e:
103
+ logger.error(f"Error predicting website traffic: {e}")
104
+ return {}
105
+
106
  # Main application that runs Gradio UI and background tasks
107
  async def main():
108
  global db_session, monitoring_task
 
134
  chatbot_interface = gr.Chatbot(type='messages')
135
  message_input = gr.Textbox(placeholder="Type your message here...")
136
  send_button = gr.Button("Send")
137
+ scrape_button = gr.Button("Scrape Website")
138
+ analyze_button = gr.Button("Analyze Website Content")
139
+ predict_button = gr.Button("Predict Website Traffic")
140
+ scrape_output = gr.Textbox(label="Scraped Website Content", interactive=False)
141
+ analyze_output = gr.JSON(label="Website Content Analysis", interactive=False)
142
+ predict_output = gr.JSON(label="Website Traffic Prediction", interactive=False)
143
  # Define button actions
144
  async def on_start_click(target_urls_str: str, storage_loc: str, feed_enabled: bool, host: str, port: str, user: str, password: str, db_name: str):
145
  global monitoring_task
 
155
  return "Monitoring stopped."
156
  async def on_view_feed_click(feed_url: str):
157
  return await fetch_feed_content(feed_url)
158
+ async def on_scrape_click(url: str):
159
+ return await scrape_website(url)
160
+ async def on_analyze_click(content: str):
161
+ return await analyze_website_content(content)
162
+ async def on_predict_click(url: str):
163
+ return await predict_website_traffic(url)
164
  stop_button.click(on_stop_click, outputs=[status_text])
165
  view_button.click(on_view_feed_click, inputs=[feed_target_url], outputs=[feed_content])
166
+ scrape_button.click(on_scrape_click, inputs=[target_urls], outputs=[scrape_output])
167
+ analyze_button.click(on_analyze_click, inputs=[scrape_output], outputs=[analyze_output])
168
+ predict_button.click(on_predict_click, inputs=[target_urls], outputs=[predict_output])
169
  send_button.click(chatbot_response, inputs=[message_input, chatbot_interface], outputs=[chatbot_interface, message_input])
170
  # Set up the timer for periodic updates
171
  feed_updater = gr.Timer(interval=300)