Spaces:
Runtime error
Runtime error
v2
Browse files
app.py
CHANGED
@@ -20,13 +20,13 @@ os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://do
|
|
20 |
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
|
21 |
os.system('pip install -q pytesseract')
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
|
31 |
import gradio as gr
|
32 |
|
@@ -42,19 +42,16 @@ from transformers import AutoProcessor
|
|
42 |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
|
43 |
from datasets import load_dataset # this dataset uses the new Image feature :)
|
44 |
|
45 |
-
from transformers import LayoutLMv3ForTokenClassification
|
46 |
-
from transformers import AutoModelForTokenClassification
|
47 |
|
48 |
#import cv2
|
49 |
from PIL import Image, ImageDraw, ImageFont
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
example = dataset["test"][0]
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
|
59 |
example = dataset["test"][0]
|
60 |
example["image"].save("example1.png")
|
@@ -65,22 +62,23 @@ example1["image"].save("example2.png")
|
|
65 |
example2 = dataset["test"][2]
|
66 |
example2["image"].save("example3.png")
|
67 |
|
68 |
-
example2["image"]
|
69 |
|
70 |
-
|
71 |
-
#Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
|
72 |
-
#Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
|
73 |
|
74 |
words, boxes, ner_tags = example["tokens"], example["bboxes"], example["ner_tags"]
|
75 |
|
76 |
features = dataset["test"].features
|
77 |
|
78 |
column_names = dataset["test"].column_names
|
|
|
79 |
image_column_name = "image"
|
80 |
text_column_name = "tokens"
|
81 |
boxes_column_name = "bboxes"
|
82 |
label_column_name = "ner_tags"
|
83 |
|
|
|
|
|
84 |
def get_label_list(labels):
|
85 |
unique_labels = set()
|
86 |
for label in labels:
|
@@ -100,24 +98,34 @@ else:
|
|
100 |
label2id = {v: k for k,v in enumerate(label_list)}
|
101 |
num_labels = len(label_list)
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
images = examples[image_column_name]
|
107 |
-
words = examples[text_column_name]
|
108 |
-
boxes = examples[boxes_column_name]
|
109 |
-
word_labels = examples[label_column_name]
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
|
|
117 |
|
118 |
-
|
119 |
-
id2label=id2label,
|
120 |
-
label2id=label2id)
|
121 |
|
122 |
# we need to define custom features for `set_format` (used later on) to work properly
|
123 |
features = Features({
|
@@ -128,22 +136,44 @@ features = Features({
|
|
128 |
'labels': Sequence(feature=Value(dtype='int64')),
|
129 |
})
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
batched=True,
|
134 |
-
remove_columns=column_names,
|
135 |
-
features=features,
|
136 |
-
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
height * (bbox[1] / 1000),
|
142 |
-
width * (bbox[2] / 1000),
|
143 |
-
height * (bbox[3] / 1000),
|
144 |
-
]
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
print(type(image))
|
149 |
width, height = image.size
|
@@ -157,11 +187,6 @@ def process_image(image):
|
|
157 |
print(k,v.shape)
|
158 |
|
159 |
# encode
|
160 |
-
#encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
161 |
-
#offset_mapping = encoding.pop('offset_mapping')
|
162 |
-
|
163 |
-
#encoding = processor(image, words, truncation=True,boxes=boxes, word_labels=word_labels,return_offsets_mapping=True, return_tensors="pt")
|
164 |
-
#offset_mapping = encoding.pop('offset_mapping')
|
165 |
|
166 |
encoding = processor(image, truncation=True,boxes=boxes, word_labels=word_labels,return_offsets_mapping=True, return_tensors="pt")
|
167 |
offset_mapping = encoding.pop('offset_mapping')
|
@@ -185,11 +210,7 @@ def process_image(image):
|
|
185 |
token_boxes = encoding.bbox.squeeze().tolist()
|
186 |
width, height = image.size
|
187 |
|
188 |
-
|
189 |
-
#true_labels = [model.config.id2label[label] for prediction, label in zip(predictions, labels) if label != -100]
|
190 |
-
#true_boxes = [unnormalize_box(box, width, height) for box, label in zip(token_boxes, labels) if label != -100]
|
191 |
-
|
192 |
-
|
193 |
# only keep non-subword predictions
|
194 |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
195 |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
@@ -205,7 +226,7 @@ def process_image(image):
|
|
205 |
|
206 |
return image
|
207 |
|
208 |
-
title = "DocumentAI - Extraction
|
209 |
description = "Extraction of Form or Invoice Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
210 |
|
211 |
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
|
@@ -216,7 +237,7 @@ css = """.output_image, .input_image {height: 600px !important}"""
|
|
216 |
|
217 |
iface = gr.Interface(fn=process_image,
|
218 |
inputs=gr.inputs.Image(type="pil"),
|
219 |
-
outputs=gr.outputs.Image(type="pil", label="annotated
|
220 |
title=title,
|
221 |
description=description,
|
222 |
article=article,
|
@@ -225,4 +246,6 @@ iface = gr.Interface(fn=process_image,
|
|
225 |
analytics_enabled = True, enable_queue=True
|
226 |
)
|
227 |
|
228 |
-
iface.launch(inline=False, share=False, debug=False)
|
|
|
|
|
|
20 |
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
|
21 |
os.system('pip install -q pytesseract')
|
22 |
|
23 |
+
!pip install gradio
|
24 |
|
25 |
+
!pip install -q git+https://github.com/huggingface/transformers.git
|
26 |
|
27 |
+
!pip install h5py
|
28 |
|
29 |
+
!pip install -q datasets seqeval
|
30 |
|
31 |
import gradio as gr
|
32 |
|
|
|
42 |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
|
43 |
from datasets import load_dataset # this dataset uses the new Image feature :)
|
44 |
|
45 |
+
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
|
|
46 |
|
47 |
#import cv2
|
48 |
from PIL import Image, ImageDraw, ImageFont
|
49 |
|
50 |
+
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base",apply_ocr = True)
|
|
|
|
|
51 |
|
52 |
+
model = LayoutLMv3ForTokenClassification.from_pretrained("microsoft/layoutlmv3-base")
|
53 |
|
54 |
+
dataset = load_dataset("nielsr/funsd-layoutlmv3")
|
55 |
|
56 |
example = dataset["test"][0]
|
57 |
example["image"].save("example1.png")
|
|
|
62 |
example2 = dataset["test"][2]
|
63 |
example2["image"].save("example3.png")
|
64 |
|
65 |
+
#example2["image"]
|
66 |
|
67 |
+
labels = dataset["test"].features['ner_tags'].feature.names
|
|
|
|
|
68 |
|
69 |
words, boxes, ner_tags = example["tokens"], example["bboxes"], example["ner_tags"]
|
70 |
|
71 |
features = dataset["test"].features
|
72 |
|
73 |
column_names = dataset["test"].column_names
|
74 |
+
|
75 |
image_column_name = "image"
|
76 |
text_column_name = "tokens"
|
77 |
boxes_column_name = "bboxes"
|
78 |
label_column_name = "ner_tags"
|
79 |
|
80 |
+
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
|
81 |
+
# unique labels.
|
82 |
def get_label_list(labels):
|
83 |
unique_labels = set()
|
84 |
for label in labels:
|
|
|
98 |
label2id = {v: k for k,v in enumerate(label_list)}
|
99 |
num_labels = len(label_list)
|
100 |
|
101 |
+
def get_label_list(labels):
|
102 |
+
unique_labels = set()
|
103 |
+
for label in labels:
|
104 |
+
unique_labels = unique_labels | set(label)
|
105 |
+
label_list = list(unique_labels)
|
106 |
+
label_list.sort()
|
107 |
+
return label_list
|
108 |
|
109 |
+
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
def unnormalize_box(bbox, width, height):
|
112 |
+
return [
|
113 |
+
width * (bbox[0] / 1000),
|
114 |
+
height * (bbox[1] / 1000),
|
115 |
+
width * (bbox[2] / 1000),
|
116 |
+
height * (bbox[3] / 1000),
|
117 |
+
]
|
118 |
|
119 |
+
#def prepare_examples(examples):
|
120 |
+
# images = examples[image_column_name]
|
121 |
+
# words = examples[text_column_name]
|
122 |
+
# boxes = examples[boxes_column_name]
|
123 |
+
# word_labels = examples[label_column_name]
|
124 |
|
125 |
+
# encoding = processor(images, words, boxes=boxes, word_labels=word_labels,
|
126 |
+
# truncation=True, padding="max_length")
|
127 |
|
128 |
+
# return encoding
|
|
|
|
|
129 |
|
130 |
# we need to define custom features for `set_format` (used later on) to work properly
|
131 |
features = Features({
|
|
|
136 |
'labels': Sequence(feature=Value(dtype='int64')),
|
137 |
})
|
138 |
|
139 |
+
def process_image(image):
|
140 |
+
width, height = image.size
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
# encode
|
143 |
+
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
144 |
+
offset_mapping = encoding.pop('offset_mapping')
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
# forward pass
|
147 |
+
outputs = model(**encoding)
|
148 |
+
|
149 |
+
# get predictions
|
150 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
151 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
152 |
+
|
153 |
+
# only keep non-subword predictions
|
154 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
155 |
+
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
156 |
+
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
157 |
+
|
158 |
+
# draw predictions over the image
|
159 |
+
draw = ImageDraw.Draw(image)
|
160 |
+
font = ImageFont.load_default()
|
161 |
+
|
162 |
+
def iob_to_label(label):
|
163 |
+
label = label[2:]
|
164 |
+
if not label:
|
165 |
+
return 'other'
|
166 |
+
return label
|
167 |
+
|
168 |
+
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
169 |
+
for prediction, box in zip(true_predictions, true_boxes):
|
170 |
+
predicted_label = iob_to_label(prediction) #.lower()
|
171 |
+
draw.rectangle(box, outline=label2color[predicted_label])
|
172 |
+
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
|
173 |
+
|
174 |
+
return image
|
175 |
+
|
176 |
+
#def process_image(image):
|
177 |
|
178 |
print(type(image))
|
179 |
width, height = image.size
|
|
|
187 |
print(k,v.shape)
|
188 |
|
189 |
# encode
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
encoding = processor(image, truncation=True,boxes=boxes, word_labels=word_labels,return_offsets_mapping=True, return_tensors="pt")
|
192 |
offset_mapping = encoding.pop('offset_mapping')
|
|
|
210 |
token_boxes = encoding.bbox.squeeze().tolist()
|
211 |
width, height = image.size
|
212 |
|
213 |
+
|
|
|
|
|
|
|
|
|
214 |
# only keep non-subword predictions
|
215 |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
216 |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
|
|
226 |
|
227 |
return image
|
228 |
|
229 |
+
title = "DocumentAI - Extraction using LayoutLMv3 model"
|
230 |
description = "Extraction of Form or Invoice Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
231 |
|
232 |
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
|
|
|
237 |
|
238 |
iface = gr.Interface(fn=process_image,
|
239 |
inputs=gr.inputs.Image(type="pil"),
|
240 |
+
outputs=gr.outputs.Image(type="pil", label="annotated image"),
|
241 |
title=title,
|
242 |
description=description,
|
243 |
article=article,
|
|
|
246 |
analytics_enabled = True, enable_queue=True
|
247 |
)
|
248 |
|
249 |
+
#iface.launch(inline=False, share=False, debug=False)
|
250 |
+
|
251 |
+
iface.launch(inline=False)
|