Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,614 Bytes
9edebae 1c11426 6681256 9edebae 4d6f2bc 48c31e7 61ad3d2 4d6f2bc 9edebae aafe7f2 05246f1 4d6f2bc 6681256 4d6f2bc 6681256 4470520 aafe7f2 4d6f2bc 0acf94b aafe7f2 b7fd57e 7e19bd9 9edebae 7e19bd9 1e250ff 7e19bd9 1e250ff 7e19bd9 0acf94b 9edebae 7e19bd9 aafe7f2 1e250ff 7e19bd9 767128b 0acf94b 7e19bd9 0acf94b aafe7f2 7e19bd9 9edebae 7e19bd9 9edebae 767128b 7e19bd9 c348e53 9edebae aafe7f2 61ad3d2 9edebae de96e86 61ad3d2 aafe7f2 4470520 aafe7f2 4470520 aafe7f2 4470520 aafe7f2 4470520 aafe7f2 4470520 7e19bd9 1e250ff 9edebae 7e19bd9 9edebae 1c11426 aafe7f2 4470520 9edebae 1e250ff 9edebae 4470520 9edebae 1e250ff 1c11426 9edebae aafe7f2 9edebae 7e19bd9 4470520 1e250ff 61ad3d2 9edebae b7fd57e aafe7f2 b7fd57e aafe7f2 b7fd57e 48c31e7 232c234 22a0476 b7fd57e aafe7f2 9edebae aafe7f2 9edebae aafe7f2 9edebae 48c31e7 7e19bd9 0acf94b 7e19bd9 0acf94b 7e19bd9 9edebae 7e19bd9 aafe7f2 7e19bd9 aafe7f2 7e19bd9 60849d7 c348e53 60849d7 61ad3d2 c348e53 60849d7 c348e53 1e250ff c348e53 767128b 4d6f2bc 48c31e7 4d6f2bc 61ad3d2 4d6f2bc 1128e78 48c31e7 9edebae 4d6f2bc 9edebae 767128b 7049262 767128b 4470520 767128b 9edebae 0acf94b 1e250ff 9edebae 4470520 4d6f2bc 9edebae 60849d7 22a0476 60849d7 7e19bd9 9edebae 60849d7 aafe7f2 60849d7 aafe7f2 60849d7 9edebae 60849d7 767128b aafe7f2 60849d7 767128b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import gc
import time
from threading import Lock
import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
class Loader:
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.ip_adapter = None
cls._instance.upscaler_2x = None
cls._instance.upscaler_4x = None
cls._instance.log = Logger("Loader")
return cls._instance
def _should_unload_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and interval == 1:
return True
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
return True
return False
def _should_unload_ip_adapter(self, model="", ip_adapter=""):
# unload if model changed
if self.model and self.model.lower() != model.lower():
return True
if self.ip_adapter and not ip_adapter:
return True
return False
def _should_unload_pipeline(self, kind="", model=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
if kind == "txt2img" and not isinstance(self.pipe, Config.PIPELINES["txt2img"]):
return True # txt2img -> img2img
if kind == "img2img" and not isinstance(self.pipe, Config.PIPELINES["img2img"]):
return True # img2img -> txt2img
return False
def _unload_deepcache(self):
if self.pipe.deepcache is None:
return
self.log.info("Unloading DeepCache")
self.pipe.deepcache.disable()
delattr(self.pipe, "deepcache")
# https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
def _unload_ip_adapter(self):
if self.ip_adapter is None:
return
self.log.info("Unloading IP-Adapter")
if not isinstance(self.pipe, Config.PIPELINES["img2img"]):
self.pipe.image_encoder = None
self.pipe.register_to_config(image_encoder=[None, None])
self.pipe.feature_extractor = None
self.pipe.unet.encoder_hid_proj = None
self.pipe.unet.config.encoder_hid_dim_type = None
self.pipe.register_to_config(feature_extractor=[None, None])
attn_procs = {}
for name, value in self.pipe.unet.attn_processors.items():
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
attn_procs[name] = (
attn_processor_class
if isinstance(value, IPAdapterAttnProcessor2_0)
else value.__class__()
)
self.pipe.unet.set_attn_processor(attn_procs)
def _flush(self):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
def _unload(self, kind="", model="", ip_adapter="", deepcache=1):
to_unload = []
if self._should_unload_deepcache(deepcache):
self._unload_deepcache()
if self._should_unload_ip_adapter(model, ip_adapter):
self._unload_ip_adapter()
to_unload.append("ip_adapter")
if self._should_unload_pipeline(kind, model):
to_unload.append("model")
to_unload.append("pipe")
for component in to_unload:
delattr(self, component)
self._flush()
for component in to_unload:
setattr(self, component, None)
def _load_ip_adapter(self, ip_adapter=""):
if not self.ip_adapter and ip_adapter:
self.log.info(f"Loading IP-Adapter: {ip_adapter}")
self.pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
)
# 50% works the best
self.pipe.set_ip_adapter_scale(0.5)
self.ip_adapter = ip_adapter
# upscalers don't need to be unloaded
def _load_upscaler(self, scale=1):
if scale == 2 and self.upscaler_2x is None:
try:
self.log.info("Loading 2x upscaler")
self.upscaler_2x = RealESRGAN(2, "cuda")
self.upscaler_2x.load_weights()
except Exception as e:
self.log.error(f"Error loading 2x upscaler: {e}")
self.upscaler_2x = None
if scale == 4 and self.upscaler_4x is None:
try:
self.log.info("Loading 4x upscaler")
self.upscaler_4x = RealESRGAN(4, "cuda")
self.upscaler_4x.load_weights()
except Exception as e:
self.log.error(f"Error loading 4x upscaler: {e}")
self.upscaler_4x = None
def _load_pipeline(
self,
kind,
model,
progress,
**kwargs,
):
pipeline = Config.PIPELINES[kind]
if self.pipe is None:
try:
start = time.perf_counter()
self.log.info(f"Loading {model}")
self.model = model
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe = pipeline.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
progress,
**kwargs,
).to("cuda")
else:
self.pipe = pipeline.from_pretrained(model, progress, **kwargs).to("cuda")
diff = time.perf_counter() - start
self.log.info(f"Loading {model} done in {diff:.2f}s")
except Exception as e:
self.log.error(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
if self.pipe is not None:
self.pipe.set_progress_bar_config(disable=progress is not None)
def _load_vae(self, taesd=False, model=""):
vae_type = type(self.pipe.vae)
is_kl = issubclass(vae_type, AutoencoderKL)
is_tiny = issubclass(vae_type, AutoencoderTiny)
# by default all models use KL
if is_kl and taesd:
self.log.info("Switching to Tiny VAE")
self.pipe.vae = AutoencoderTiny.from_pretrained(
pretrained_model_name_or_path="madebyollin/taesd",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
return
if is_tiny and not taesd:
self.log.info("Switching to KL VAE")
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe.vae = AutoencoderKL.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
else:
self.pipe.vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model,
torch_dtype=self.pipe.dtype,
subfolder="vae",
variant="fp16",
).to(self.pipe.device)
def _load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if not has_deepcache and interval == 1:
return
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
return
self.log.info("Loading DeepCache")
self.pipe.deepcache = DeepCacheSDHelper(self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
# https://github.com/ChenyangSi/FreeU
def _load_freeu(self, freeu=False):
block = self.pipe.unet.up_blocks[0]
attrs = ["b1", "b2", "s1", "s2"]
has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
if has_freeu and not freeu:
self.log.info("Disabling FreeU")
self.pipe.disable_freeu()
elif not has_freeu and freeu:
self.log.info("Enabling FreeU")
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
def load(
self,
kind,
ip_adapter,
model,
scheduler,
karras,
taesd,
freeu,
deepcache,
scale,
progress,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a", "PNDM"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
pipe_kwargs = {
"safety_checker": None,
"requires_safety_checker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
}
# diffusers fp16 variant
if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
pipe_kwargs["variant"] = "fp16"
else:
pipe_kwargs["variant"] = None
# convert fp32 to bf16 if possible
if model.lower() in ["linaqruf/anything-v3-1"]:
pipe_kwargs["torch_dtype"] = (
torch.bfloat16
if torch.cuda.get_device_properties(device).major >= 8
else torch.float16
)
else:
# defaults to float32
pipe_kwargs["torch_dtype"] = torch.float16
self._unload(kind, model, ip_adapter, deepcache)
self._load_pipeline(kind, model, progress, **pipe_kwargs)
# error loading model
if self.pipe is None:
return
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model.lower():
if not same_scheduler:
self.log.info(f"Switching to {scheduler}")
if not same_karras:
self.log.info(f"{'Enabling' if karras else 'Disabling'} Karras sigmas")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
self._load_vae(taesd, model)
self._load_upscaler(scale)
self._load_freeu(freeu)
self._load_deepcache(deepcache)
self._load_ip_adapter(ip_adapter)
|