Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,396 Bytes
ba33983 1a688bc ba33983 1a688bc ba33983 1a688bc ba33983 c348e53 579e8d0 ba33983 1a688bc ba33983 5c4e8c1 ba33983 c348e53 ba33983 5c4e8c1 ba33983 c348e53 ba33983 5c4e8c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
## Usage
Enter a prompt and click `Generate`.
### Prompting
Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. You can use a float or +/-. For example:
* `man, portrait, blue+ eyes, close-up`
* `man, portrait, (blue)1.1 eyes, close-up`
* `man, portrait, (blue eyes)-, close-up`
* `man, portrait, (blue eyes)0.9, close-up`
Note that `++` is `1.1^2` (and so on). See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more and read [Civitai](https://civitai.com)'s guide on [prompting](https://education.civitai.com/civitais-prompt-crafting-guide-part-1-basics/) for best practices.
#### Negative Prompt
Start with a [textual inversion](https://huggingface.co/docs/diffusers/en/using-diffusers/textual_inversion_inference) embedding:
* [`<bad_prompt>`](https://civitai.com/models/55700/badprompt-negative-embedding)
* [`<negative_hand>`](https://civitai.com/models/56519/negativehand-negative-embedding)
* [`<fast_negative>`](https://civitai.com/models/71961/fast-negative-embedding-fastnegativev2)
* [`<bad_dream>`](https://civitai.com/models/72437?modelVersionId=77169)
* [`<unrealistic_dream>`](https://civitai.com/models/72437?modelVersionId=77173)
And add to it. You can use weighting in the negative prompt as well.
#### Arrays
Arrays allow you to generate different images from a single prompt. For example, `[[cat,corgi]]` will expand into 2 separate prompts. Make sure `Images` is set accordingly (e.g., 2). Only works for the positive prompt. Inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).
### Styles
Styles are prompt templates from twri's [sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node. Start with a subject like "cat", pick a style, and iterate from there.
#### FreeU
[FreeU](https://github.com/ChenyangSi/FreeU) (Si et al. 2023) re-weights the contributions sourced from the U-Net’s skip connections and backbone feature maps to potentially improve image quality.
#### Clip Skip
When enabled, the last CLIP layer is skipped. This _can_ improve image quality with anime models.
### Scale
Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
### Models
Each model checkpoint has a different aesthetic:
* [lykon/dreamshaper-8](https://huggingface.co/Lykon/dreamshaper-8): general purpose (default)
* [fluently/fluently-v4](https://huggingface.co/fluently/Fluently-v4): general purpose merge
* [linaqruf/anything-v3-1](https://huggingface.co/linaqruf/anything-v3-1): anime
* [prompthero/openjourney-v4](https://huggingface.co/prompthero/openjourney-v4): Midjourney-like
* [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5): base
* [sg161222/realistic_vision_v5.1](https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE): photorealistic
#### Schedulers
Optionally, the [Karras](https://arxiv.org/abs/2206.00364) noise schedule can be used:
* [DEIS 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/deis) (default)
* [DPM++ 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/multistep_dpm_solver)
* [DPM2 a](https://huggingface.co/docs/diffusers/api/schedulers/dpm_discrete_ancestral)
* [Euler a](https://huggingface.co/docs/diffusers/en/api/schedulers/euler_ancestral)
* [Heun](https://huggingface.co/docs/diffusers/api/schedulers/heun)
* [LMS](https://huggingface.co/docs/diffusers/api/schedulers/lms_discrete)
* [PNDM](https://huggingface.co/docs/diffusers/api/schedulers/pndm)
### Advanced
#### DeepCache
[DeepCache](https://github.com/horseee/DeepCache) (Ma et al. 2023) caches lower U-Net layers and reuses them every `Interval` steps:
* `1`: no caching
* `2`: more quality (default)
* `3`: balanced
* `4`: more speed
#### ToMe
[Token merging](https://github.com/dbolya/tomesd) (Bolya & Hoffman 2023) reduces the number of tokens processed by the model. Set `Ratio` to the desired reduction factor. ToMe's impact is more noticeable on larger images.
#### Tiny VAE
Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for almost instant latent decoding with a minor loss in detail. Useful for development.
#### Prompt Truncation
When enabled, prompts will be truncated to CLIP's limit of 77 tokens. By default this is _disabled_, so Compel will chunk prompts into segments rather than cutting them off.
|