File size: 12,682 Bytes
05246f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767128b
05246f1
 
 
 
 
 
 
 
 
 
 
039ff6d
 
 
 
05246f1
 
 
 
 
 
 
 
 
 
 
 
 
039ff6d
05246f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039ff6d
05246f1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# BSD 3-Clause License
#
# Copyright (c) 2021, Sberbank AI
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import einops
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torch import nn as nn
from torch.nn import functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm

# https://huggingface.co/ai-forever/Real-ESRGAN
HF_MODELS = {
    2: {
        "repo_id": "ai-forever/Real-ESRGAN",
        "filename": "RealESRGAN_x2.pth",
    },
    4: {
        "repo_id": "ai-forever/Real-ESRGAN",
        "filename": "RealESRGAN_x4.pth",
    },
    # 8: {
    #     "repo_id": "ai-forever/Real-ESRGAN",
    #     "filename": "RealESRGAN_x8.pth",
    # },
}


def pad_reflect(image, pad_size):
    # fmt: off
    image_size = image.shape
    height, width = image_size[:2]
    new_image = np.zeros([height + pad_size * 2, width + pad_size * 2, image_size[2]]).astype(np.uint8)
    new_image[pad_size:-pad_size, pad_size:-pad_size, :] = image
    new_image[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0)    # top
    new_image[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0)    # bottom
    new_image[:, 0:pad_size, :] = np.flip(new_image[:, pad_size : pad_size * 2, :], axis=1)    # left
    new_image[:, -pad_size:, :] = np.flip(new_image[:, -pad_size * 2 : -pad_size, :], axis=1)  # right
    return new_image
    # fmt: on


def unpad_image(image, pad_size):
    return image[pad_size:-pad_size, pad_size:-pad_size, :]


def pad_patch(image_patch, padding_size, channel_last=True):
    if channel_last:
        return np.pad(
            image_patch,
            ((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
            "edge",
        )
    else:
        return np.pad(
            image_patch,
            ((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
            "edge",
        )


def unpad_patches(image_patches, padding_size):
    return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]


def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
    xmax, ymax, _ = image_array.shape
    x_remainder = xmax % patch_size
    y_remainder = ymax % patch_size

    # modulo here is to avoid extending of patch_size instead of 0
    x_extend = (patch_size - x_remainder) % patch_size
    y_extend = (patch_size - y_remainder) % patch_size

    # make sure the image is divisible into regular patches
    extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), "edge")

    # add padding around the image to simplify computations
    padded_image = pad_patch(extended_image, padding_size, channel_last=True)

    patches = []
    xmax, ymax, _ = padded_image.shape
    x_lefts = range(padding_size, xmax - padding_size, patch_size)
    y_tops = range(padding_size, ymax - padding_size, patch_size)

    for x in x_lefts:
        for y in y_tops:
            x_left = x - padding_size
            y_top = y - padding_size
            x_right = x + patch_size + padding_size
            y_bottom = y + patch_size + padding_size
            patch = padded_image[x_left:x_right, y_top:y_bottom, :]
            patches.append(patch)
    return np.array(patches), padded_image.shape


def stitch_together(patches, padded_image_shape, target_shape, padding_size=4):
    xmax, ymax, _ = padded_image_shape
    patches = unpad_patches(patches, padding_size)
    patch_size = patches.shape[1]
    n_patches_per_row = ymax // patch_size
    complete_image = np.zeros((xmax, ymax, 3))

    row = -1
    col = 0
    for i in range(len(patches)):
        if i % n_patches_per_row == 0:
            row += 1
            col = 0
        complete_image[
            row * patch_size : (row + 1) * patch_size, col * patch_size : (col + 1) * patch_size, :
        ] = patches[i]
        col += 1
    return complete_image[0 : target_shape[0], 0 : target_shape[1], :]


@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
    if not isinstance(module_list, list):
        module_list = [module_list]
    for module in module_list:
        for m in module.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, **kwargs)
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.fill_(bias_fill)
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, **kwargs)
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.fill_(bias_fill)
            elif isinstance(m, _BatchNorm):
                init.constant_(m.weight, 1)
                if m.bias is not None:
                    m.bias.data.fill_(bias_fill)


def make_layer(basic_block, num_basic_block, **kwarg):
    layers = []
    for _ in range(num_basic_block):
        layers.append(basic_block(**kwarg))
    return nn.Sequential(*layers)


def pixel_unshuffle(x, scale):
    _, _, h, w = x.shape
    assert h % scale == 0 and w % scale == 0, "Height and width must be divisible by scale"
    return einops.rearrange(
        x,
        "b c (h s1) (w s2) -> b (c s1 s2) h w",
        s1=scale,
        s2=scale,
    )


class ResidualDenseBlock(nn.Module):
    def __init__(self, num_feat=64, num_grow_ch=32):
        super(ResidualDenseBlock, self).__init__()
        self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
        self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
        self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
        self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
        self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)

    def forward(self, x):
        x1 = self.lrelu(self.conv1(x))
        x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
        x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
        x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        return x5 * 0.2 + x  # scale the residual by a factor of 0.2


class RRDB(nn.Module):
    def __init__(self, num_feat, num_grow_ch=32):
        super(RRDB, self).__init__()
        self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
        self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
        self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)

    def forward(self, x):
        out = self.rdb1(x)
        out = self.rdb2(out)
        out = self.rdb3(out)
        return out * 0.2 + x  # scale the residual by a factor of 0.2


class RRDBNet(nn.Module):
    def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
        super(RRDBNet, self).__init__()
        self.scale = scale
        if scale == 2:
            num_in_ch = num_in_ch * 4
        elif scale == 1:
            num_in_ch = num_in_ch * 16
        self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
        self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
        self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        if scale == 8:
            self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def forward(self, x):
        if self.scale == 2:
            feat = pixel_unshuffle(x, scale=2)
        elif self.scale == 1:
            feat = pixel_unshuffle(x, scale=4)
        else:
            feat = x
        feat = self.conv_first(feat)
        body_feat = self.conv_body(self.body(feat))
        feat = feat + body_feat
        feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
        feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
        if self.scale == 8:
            feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode="nearest")))
        out = self.conv_last(self.lrelu(self.conv_hr(feat)))
        return out


class RealESRGAN:
    def __init__(self, scale=2, device=None):
        self.device = device
        self.scale = scale
        self.model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=scale,
        )

    def to(self, device):
        self.device = device
        self.model.to(device=device)

    def load_weights(self):
        assert self.scale in [2, 4], "You can download models only with scales: 2, 4"
        config = HF_MODELS[self.scale]
        cache_path = hf_hub_download(config["repo_id"], filename=config["filename"])
        loadnet = torch.load(cache_path)
        if "params" in loadnet:
            self.model.load_state_dict(loadnet["params"], strict=True)
        elif "params_ema" in loadnet:
            self.model.load_state_dict(loadnet["params_ema"], strict=True)
        else:
            self.model.load_state_dict(loadnet, strict=True)
        self.model.eval().to(device=self.device)

    @torch.autocast("cuda")
    def predict(self, lr_image, batch_size=4, patches_size=192, padding=24, pad_size=15):
        if not isinstance(lr_image, np.ndarray):
            lr_image = np.array(lr_image)
        if lr_image.min() < 0.0:
            lr_image = (lr_image + 1.0) / 2.0
        if lr_image.max() <= 1.0:
            lr_image = lr_image * 255.0
        lr_image = pad_reflect(lr_image, pad_size)
        patches, p_shape = split_image_into_overlapping_patches(
            lr_image,
            patch_size=patches_size,
            padding_size=padding,
        )
        patches = torch.Tensor(patches / 255.0)
        image = einops.rearrange(patches, "b h w c -> b c h w").to(device=self.device)

        with torch.inference_mode():
            res = self.model(image[0:batch_size])
            for i in range(batch_size, image.shape[0], batch_size):
                res = torch.cat((res, self.model(image[i : i + batch_size])), 0)

        scale = self.scale
        sr_image = einops.rearrange(res.clamp(0, 1), "b c h w -> b h w c").cpu().numpy()
        padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
        scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
        sr_image = stitch_together(
            sr_image,
            padded_image_shape=padded_size_scaled,
            target_shape=scaled_image_shape,
            padding_size=padding * scale,
        )
        sr_image = (sr_image * 255).astype(np.uint8)
        sr_image = unpad_image(sr_image, pad_size * scale)
        sr_image = Image.fromarray(sr_image)
        return sr_image