Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,877 Bytes
39a6792 f70898c 069fc81 7a7cda5 39a6792 f70898c 98afd85 51fab87 39a6792 d179c4c 65d64be d179c4c 98afd85 d179c4c 39a6792 7a7cda5 d179c4c 39a6792 069fc81 d179c4c 39a6792 d179c4c 9e8b99d 51fab87 65d64be d179c4c 65d64be d179c4c 65d64be f70898c 069fc81 f70898c d179c4c f70898c d179c4c f70898c 7a7cda5 98afd85 7a7cda5 98afd85 7a7cda5 98afd85 7a7cda5 98afd85 7a7cda5 98afd85 7a7cda5 98afd85 7a7cda5 98afd85 7a7cda5 39a6792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import functools
import inspect
import json
import os
import time
from contextlib import contextmanager
from typing import Callable, Tuple, TypeVar
import anyio
import httpx
import numpy as np
import torch
from anyio import Semaphore
from diffusers.utils import logging as diffusers_logging
from huggingface_hub._snapshot_download import snapshot_download
from huggingface_hub.utils import are_progress_bars_disabled
from PIL import Image
from transformers import logging as transformers_logging
from typing_extensions import ParamSpec
from .annotators import CannyAnnotator
from .logger import Logger
T = TypeVar("T")
P = ParamSpec("P")
MAX_CONCURRENT_THREADS = 1
MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS)
@contextmanager
def timer(message="Operation", logger=print):
start = time.perf_counter()
logger(message)
try:
yield
finally:
end = time.perf_counter()
logger(f"{message} took {end - start:.2f}s")
@functools.lru_cache()
def load_json(path: str) -> dict:
with open(path, "r", encoding="utf-8") as file:
return json.load(file)
@functools.lru_cache()
def read_file(path: str) -> str:
with open(path, "r", encoding="utf-8") as file:
return file.read()
def disable_progress_bars():
transformers_logging.disable_progress_bar()
diffusers_logging.disable_progress_bar()
def enable_progress_bars():
# warns if `HF_HUB_DISABLE_PROGRESS_BARS` env var is not None
transformers_logging.enable_progress_bar()
diffusers_logging.enable_progress_bar()
def safe_progress(progress, current=0, total=0, desc=""):
if progress is not None:
progress((current, total), desc=desc)
def clear_cuda_cache():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
def download_repo_files(repo_id, allow_patterns, token=None):
was_disabled = are_progress_bars_disabled()
enable_progress_bars()
snapshot_path = snapshot_download(
repo_id=repo_id,
repo_type="model",
revision="main",
token=token,
allow_patterns=allow_patterns,
ignore_patterns=None,
)
if was_disabled:
disable_progress_bars()
return snapshot_path
def download_civit_file(lora_id, version_id, file_path=".", token=None):
base_url = "https://civitai.com/api/download/models"
file = f"{file_path}/{lora_id}.{version_id}.safetensors"
log = Logger("download_civit_file")
if os.path.exists(file):
return
try:
params = {"token": token}
response = httpx.get(
f"{base_url}/{version_id}",
timeout=None,
params=params,
follow_redirects=True,
)
response.raise_for_status()
os.makedirs(file_path, exist_ok=True)
with open(file, "wb") as f:
f.write(response.content)
except httpx.HTTPStatusError as e:
log.error(f"{e.response.status_code} {e.response.text}")
except httpx.RequestError as e:
log.error(f"RequestError: {e}")
def image_to_pil(image: Image.Image):
"""Converts various image inputs to RGB PIL Image."""
if isinstance(image, str) and os.path.isfile(image):
image = Image.open(image)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if isinstance(image, Image.Image):
return image.convert("RGB")
raise ValueError("Invalid image input")
def get_valid_image_size(
width: int,
height: int,
step=64,
min_size=512,
max_size=4096,
):
"""Get new image dimensions while preserving aspect ratio."""
def round_down(x):
return int((x // step) * step)
def clamp(x):
return max(min_size, min(x, max_size))
aspect_ratio = width / height
# try width first
if width > height:
new_width = round_down(clamp(width))
new_height = round_down(new_width / aspect_ratio)
else:
new_height = round_down(clamp(height))
new_width = round_down(new_height * aspect_ratio)
# if new dimensions are out of bounds, try height
if not min_size <= new_width <= max_size:
new_width = round_down(clamp(width))
new_height = round_down(new_width / aspect_ratio)
if not min_size <= new_height <= max_size:
new_height = round_down(clamp(height))
new_width = round_down(new_height * aspect_ratio)
return (new_width, new_height)
def resize_image(
image: Image.Image,
size: Tuple[int, int] = None,
resampling: Image.Resampling = None,
):
"""Resize image with proper interpolation and dimension constraints."""
image = image_to_pil(image)
if size is None:
size = get_valid_image_size(*image.size)
if resampling is None:
resampling = Image.Resampling.LANCZOS
return image.resize(size, resampling)
def annotate_image(image: Image.Image, annotator="canny"):
"""Get the feature map of an image using the specified annotator."""
size = get_valid_image_size(*image.size)
image = resize_image(image, size)
if annotator.lower() == "canny":
canny = CannyAnnotator()
return canny(image, size)
raise ValueError(f"Invalid annotator: {annotator}")
# Like the original but supports args and kwargs instead of a dict
# https://github.com/huggingface/huggingface-inference-toolkit/blob/0.2.0/src/huggingface_inference_toolkit/async_utils.py
async def async_call(fn: Callable[P, T], *args: P.args, **kwargs: P.kwargs) -> T:
async with MAX_THREADS_GUARD:
sig = inspect.signature(fn)
bound_args = sig.bind(*args, **kwargs)
bound_args.apply_defaults()
partial_fn = functools.partial(fn, **bound_args.arguments)
return await anyio.to_thread.run_sync(partial_fn)
|