Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,873 Bytes
cb5daed 4d6f2bc 7736f5f 4d6f2bc 39a6792 4d6f2bc eb8fc69 4d6f2bc 48c31e7 dffd0bb 23f4f95 eb8fc69 ca5a1e4 f70898c ca5a1e4 39a6792 4d6f2bc 767128b 4470520 dffd0bb 4d6f2bc 4470520 48c31e7 4d6f2bc 48c31e7 4d6f2bc 4470520 4d6f2bc 4470520 4d6f2bc 48c31e7 4d6f2bc f70898c 39a6792 1a688bc 232c234 eb8fc69 232c234 eb8fc69 6681256 4470520 6681256 4470520 6681256 4470520 6681256 4d6f2bc 60849d7 61ad3d2 f70898c 23f4f95 1a688bc 4d6f2bc af07f4b 4470520 48c31e7 1128e78 af07f4b 60849d7 6829539 4d6f2bc 1a688bc 48c31e7 c348e53 48c31e7 05246f1 5c4e8c1 a8ad716 4d6f2bc 1128e78 5c4e8c1 1128e78 1a688bc 48c31e7 4470520 48c31e7 4d6f2bc 61ad3d2 6829539 a8ad716 6829539 a8ad716 6829539 4470520 a8ad716 6829539 4470520 6829539 4470520 6829539 cb5daed 6829539 4470520 6829539 a8ad716 6829539 4d6f2bc 4470520 f70898c 4470520 f70898c 6829539 f70898c 6829539 1a7f234 6829539 4d6f2bc 6829539 dffd0bb 39a6792 f70898c 39a6792 f70898c 4470520 39a6792 6829539 dffd0bb f70898c 6829539 4470520 6829539 f70898c 6829539 f70898c 6829539 4470520 f70898c 6829539 f70898c 4470520 6829539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os
import re
import time
from datetime import datetime
from itertools import product
from typing import Callable
import numpy as np
import spaces
import torch
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
from compel.prompt_parser import PromptParser
from huggingface_hub.utils import HFValidationError, RepositoryNotFoundError
from PIL import Image
from .config import Config
from .loader import Loader
from .utils import load_json
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="transformers")
__import__("transformers").logging.set_verbosity_error()
def parse_prompt_with_arrays(prompt: str) -> list[str]:
arrays = re.findall(r"\[\[(.*?)\]\]", prompt)
if not arrays:
return [prompt]
tokens = [item.split(",") for item in arrays] # [("a", "b"), ("1", "2")]
combinations = list(product(*tokens)) # [("a", "1"), ("a", "2"), ("b", "1"), ("b", "2")]
# find all the arrays in the prompt and replace them with tokens
prompts = []
for combo in combinations:
current_prompt = prompt
for i, token in enumerate(combo):
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
prompts.append(current_prompt)
return prompts
def apply_style(positive_prompt, negative_prompt, style_id="none"):
if style_id.lower() == "none":
return (positive_prompt, negative_prompt)
styles = load_json("./data/styles.json")
style = styles.get(style_id)
if style is None:
return (positive_prompt, negative_prompt)
style_base = styles.get("_base", {})
return (
f"{style.get('positive')}, {style_base.get('positive')}".format(prompt=positive_prompt),
f"{style.get('negative')}, {style_base.get('negative')}".format(prompt=negative_prompt),
)
def prepare_image(input, size=None):
image = None
if isinstance(input, Image.Image):
image = input
if isinstance(input, np.ndarray):
image = Image.fromarray(input)
if isinstance(input, str):
if os.path.isfile(input):
image = Image.open(input)
if image is not None:
image = image.convert("RGB")
if size is not None:
image = image.resize(size, Image.Resampling.LANCZOS)
if image is not None:
return image
else:
raise ValueError("Invalid image prompt")
def gpu_duration(**kwargs):
loading = 20
duration = 10
width = kwargs.get("width", 512)
height = kwargs.get("height", 512)
scale = kwargs.get("scale", 1)
num_images = kwargs.get("num_images", 1)
size = width * height
if size > 500_000:
duration += 5
if scale == 4:
duration += 5
return loading + (duration * num_images)
@spaces.GPU(duration=gpu_duration)
def generate(
positive_prompt,
negative_prompt="",
image_prompt=None,
ip_image=None,
ip_face=False,
lora_1=None,
lora_1_weight=0.0,
lora_2=None,
lora_2_weight=0.0,
embeddings=[],
style=None,
seed=None,
model="Lykon/dreamshaper-8",
scheduler="DDIM",
width=512,
height=512,
guidance_scale=7.5,
inference_steps=40,
denoising_strength=0.8,
deepcache=1,
scale=1,
num_images=1,
karras=False,
taesd=False,
freeu=False,
clip_skip=False,
Info: Callable[[str], None] = None,
Error=Exception,
progress=None,
):
if not torch.cuda.is_available():
raise Error("CUDA not available")
# https://pytorch.org/docs/stable/generated/torch.manual_seed.html
if seed is None or seed < 0:
seed = int(datetime.now().timestamp() * 1_000_000) % (2**64)
CURRENT_STEP = 0
CURRENT_IMAGE = 1
KIND = "img2img" if image_prompt is not None else "txt2img"
EMBEDDINGS_TYPE = (
ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NORMALIZED
if clip_skip
else ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED
)
if ip_image:
IP_ADAPTER = "full-face" if ip_face else "plus"
else:
IP_ADAPTER = ""
if progress is not None:
TQDM = False
progress((0, inference_steps), desc=f"Generating image {CURRENT_IMAGE}/{num_images}")
else:
TQDM = True
def callback_on_step_end(pipeline, step, timestep, latents):
nonlocal CURRENT_STEP, CURRENT_IMAGE
if progress is None:
return latents
strength = denoising_strength if KIND == "img2img" else 1
total_steps = min(int(inference_steps * strength), inference_steps)
CURRENT_STEP = step + 1
progress(
(CURRENT_STEP, total_steps),
desc=f"Generating image {CURRENT_IMAGE}/{num_images}",
)
return latents
start = time.perf_counter()
loader = Loader()
loader.load(
KIND,
IP_ADAPTER,
model,
scheduler,
karras,
taesd,
freeu,
deepcache,
scale,
TQDM,
)
if loader.pipe is None:
raise Error(f"Error loading {model}")
pipe = loader.pipe
upscaler = None
if scale == 2:
upscaler = loader.upscaler_2x
if scale == 4:
upscaler = loader.upscaler_4x
# load loras
loras = []
weights = []
loras_and_weights = [(lora_1, lora_1_weight), (lora_2, lora_2_weight)]
loras_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "loras"))
for lora, weight in loras_and_weights:
if lora and lora.lower() != "none" and lora not in loras:
config = Config.CIVIT_LORAS.get(lora)
if config:
try:
pipe.load_lora_weights(
loras_dir,
adapter_name=lora,
weight_name=f"{lora}.{config['model_version_id']}.safetensors",
)
weights.append(weight)
loras.append(lora)
except Exception:
raise Error(f"Error loading {config['name']} LoRA")
# unload after generating or if there was an error
try:
if loras:
pipe.set_adapters(loras, adapter_weights=weights)
except Exception:
pipe.unload_lora_weights()
raise Error("Error setting LoRA weights")
# load embeddings
embeddings_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "embeddings"))
for embedding in embeddings:
try:
# wrap embeddings in angle brackets
pipe.load_textual_inversion(
pretrained_model_name_or_path=f"{embeddings_dir}/{embedding}.pt",
token=f"<{embedding}>",
)
except (EnvironmentError, HFValidationError, RepositoryNotFoundError):
raise Error(f"Invalid embedding: {embedding}")
# prompt embeds
compel = Compel(
device=pipe.device,
tokenizer=pipe.tokenizer,
truncate_long_prompts=False,
text_encoder=pipe.text_encoder,
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipe.dtype,
textual_inversion_manager=DiffusersTextualInversionManager(pipe),
)
images = []
current_seed = seed
for i in range(num_images):
# seeded generator for each iteration
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
try:
positive_prompts = parse_prompt_with_arrays(positive_prompt)
index = i % len(positive_prompts)
positive_styled, negative_styled = apply_style(
positive_prompts[index],
negative_prompt,
style,
)
if negative_styled.startswith("(), "):
negative_styled = negative_styled[4:]
for lora in loras:
positive_styled += f", {Config.CIVIT_LORAS[lora]['trigger']}"
for embedding in embeddings:
negative_styled += f", <{embedding}>"
# print prompts
positive_embeds, negative_embeds = compel.pad_conditioning_tensors_to_same_length(
[compel(positive_styled), compel(negative_styled)]
)
except PromptParser.ParsingException:
raise Error("Invalid prompt")
kwargs = {
"width": width,
"height": height,
"generator": generator,
"prompt_embeds": positive_embeds,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"negative_prompt_embeds": negative_embeds,
"output_type": "np" if scale > 1 else "pil",
}
if progress is not None:
kwargs["callback_on_step_end"] = callback_on_step_end
if KIND == "img2img":
kwargs["strength"] = denoising_strength
kwargs["image"] = prepare_image(image_prompt, (width, height))
if IP_ADAPTER:
# don't resize full-face images since they are usually square crops
size = None if ip_face else (width, height)
kwargs["ip_adapter_image"] = prepare_image(ip_image, size)
try:
image = pipe(**kwargs).images[0]
if scale > 1:
image = upscaler.predict(image)
images.append((image, str(current_seed)))
current_seed += 1
except Exception as e:
raise Error(f"{e}")
finally:
if embeddings:
pipe.unload_textual_inversion()
if loras:
pipe.unload_lora_weights()
CURRENT_STEP = 0
CURRENT_IMAGE += 1
diff = time.perf_counter() - start
if Info:
Info(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
return images
|