Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,963 Bytes
1e250ff 98afd85 1e250ff 98afd85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
from importlib import import_module
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionPipeline,
)
from diffusers.loaders.single_file import (
SINGLE_FILE_OPTIONAL_COMPONENTS,
load_single_file_sub_model,
)
from diffusers.loaders.single_file_utils import fetch_diffusers_config, load_single_file_checkpoint
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
from diffusers.pipelines.pipeline_loading_utils import (
ALL_IMPORTABLE_CLASSES,
_get_pipeline_class,
load_sub_model,
)
from diffusers.utils import logging
from huggingface_hub import snapshot_download
from huggingface_hub.utils import validate_hf_hub_args
class CustomDiffusionMixin:
r"""
Overrides DiffusionPipeline methods.
"""
# Copied from https://github.com/huggingface/diffusers/blob/v0.30.3/src/diffusers/pipelines/pipeline_utils.py#L480
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_name_or_path, progress=None, **kwargs):
torch_dtype = kwargs.pop("torch_dtype", None)
variant = kwargs.pop("variant", None)
token = kwargs.pop("token", None)
# download the checkpoints and configs
cached_folder = cls.download(
pretrained_model_name_or_path,
variant=variant,
token=token,
**kwargs,
)
# pop out "_ignore_files" as it is only needed for download
config_dict = cls.load_config(cached_folder)
config_dict.pop("_ignore_files", None)
# Define which model components should load variants.
# We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
# Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors` with variant being `"fp16"`.
model_variants = {}
if variant is not None:
for folder in os.listdir(cached_folder):
folder_path = os.path.join(cached_folder, folder)
is_folder = os.path.isdir(folder_path) and folder in config_dict
variant_exists = is_folder and any(
p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
)
if variant_exists:
model_variants[folder] = variant
# load the pipeline class
pipeline_class = _get_pipeline_class(cls, config=config_dict)
# define expected modules given pipeline signature and define non-None initialized modules (=`init_kwargs`)
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
return True
init_dict, _, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {
k: init_dict.pop(k)
for k in optional_kwargs
if k in init_dict and k not in pipeline_class._optional_components
}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
# load each module in the pipeline
pipelines = import_module("diffusers.pipelines")
tqdm = logging.tqdm if progress is None else progress.tqdm
for name, (library_name, class_name) in tqdm(
sorted(init_dict.items()),
desc="Loading pipeline components",
):
# use passed sub model or load class_name from library_name
loaded_sub_model = None
if name in passed_class_obj:
# passed as an argument like "scheduler"
loaded_sub_model = passed_class_obj[name]
else:
loaded_sub_model = load_sub_model(
library_name=library_name,
class_name=class_name,
importable_classes=ALL_IMPORTABLE_CLASSES,
pipelines=pipelines,
is_pipeline_module=hasattr(pipelines, library_name),
pipeline_class=pipeline_class,
torch_dtype=torch_dtype,
provider=None,
sess_options=None,
device_map=None,
max_memory=None,
offload_folder=None,
offload_state_dict=False,
model_variants=model_variants,
name=name,
from_flax=False,
variant=variant,
low_cpu_mem_usage=_LOW_CPU_MEM_USAGE_DEFAULT,
cached_folder=cached_folder,
)
init_kwargs[name] = loaded_sub_model
# potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
if len(missing_modules) > 0:
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
# instantiate the pipeline
model = pipeline_class(**init_kwargs)
# save where the model was instantiated from
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
return model
# Copied from https://github.com/huggingface/diffusers/blob/v0.30.3/src/diffusers/loaders/single_file.py#L270
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, progress=None, **kwargs):
token = kwargs.pop("token", None)
torch_dtype = kwargs.pop("torch_dtype", None)
# load the pipeline class
pipeline_class = _get_pipeline_class(cls, config=None)
checkpoint = load_single_file_checkpoint(pretrained_model_link_or_path, token=token)
config = fetch_diffusers_config(checkpoint)
default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
# attempt to download the config files for the pipeline
cached_model_config_path = snapshot_download(
default_pretrained_model_config_name,
token=token,
allow_patterns=["**/*.json", "*.json", "*.txt", "**/*.txt", "**/*.model"],
)
# pop out "_ignore_files" as it is only needed for download
config_dict = pipeline_class.load_config(cached_model_config_path)
config_dict.pop("_ignore_files", None)
# define expected modules given pipeline signature and define non-None initialized modules (=`init_kwargs`)
expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
if name in SINGLE_FILE_OPTIONAL_COMPONENTS:
return False
return True
init_dict, _, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
# load each module in the pipeline
pipelines = import_module("diffusers.pipelines")
tqdm = logging.tqdm if progress is None else progress.tqdm
for name, (library_name, class_name) in tqdm(
sorted(init_dict.items()),
desc="Loading pipeline components",
):
# use passed sub model or load class_name from library_name
loaded_sub_model = None
if name in passed_class_obj:
# passed as an argument like "scheduler"
loaded_sub_model = passed_class_obj[name]
else:
loaded_sub_model = load_single_file_sub_model(
library_name=library_name,
class_name=class_name,
name=name,
checkpoint=checkpoint,
is_pipeline_module=hasattr(pipelines, library_name),
cached_model_config_path=cached_model_config_path,
pipelines=pipelines,
torch_dtype=torch_dtype,
**kwargs,
)
init_kwargs[name] = loaded_sub_model
# potentially add passed objects if expected
missing_modules = set(expected_modules) - set(init_kwargs.keys())
if len(missing_modules) > 0:
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
# instantiate the pipeline
pipe = pipeline_class(**init_kwargs)
# save where the model was instantiated from
pipe.register_to_config(_name_or_path=pretrained_model_link_or_path)
return pipe
class CustomStableDiffusionPipeline(CustomDiffusionMixin, StableDiffusionPipeline):
pass
class CustomStableDiffusionImg2ImgPipeline(CustomDiffusionMixin, StableDiffusionImg2ImgPipeline):
pass
class CustomStableDiffusionControlNetPipeline(
CustomDiffusionMixin,
StableDiffusionControlNetPipeline,
):
pass
class CustomStableDiffusionControlNetImg2ImgPipeline(
CustomDiffusionMixin,
StableDiffusionControlNetImg2ImgPipeline,
):
pass
|