diffusion / lib /loader.py
adamelliotfields's picture
Progress bar for loading pipeline
1e250ff verified
raw
history blame
11.6 kB
import gc
import time
from threading import Lock
import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
class Loader:
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.ip_adapter = None
cls._instance.upscaler_2x = None
cls._instance.upscaler_4x = None
cls._instance.log = Logger("Loader")
return cls._instance
def _should_unload_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and interval == 1:
return True
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
return True
return False
def _should_unload_ip_adapter(self, model="", ip_adapter=""):
# unload if model changed
if self.model and self.model.lower() != model.lower():
return True
if self.ip_adapter and not ip_adapter:
return True
return False
def _should_unload_pipeline(self, kind="", model=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
if kind == "txt2img" and not isinstance(self.pipe, Config.PIPELINES["txt2img"]):
return True # txt2img -> img2img
if kind == "img2img" and not isinstance(self.pipe, Config.PIPELINES["img2img"]):
return True # img2img -> txt2img
return False
def _unload_deepcache(self):
if self.pipe.deepcache is None:
return
self.log.info("Unloading DeepCache")
self.pipe.deepcache.disable()
delattr(self.pipe, "deepcache")
# https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
def _unload_ip_adapter(self):
if self.ip_adapter is None:
return
self.log.info("Unloading IP-Adapter")
if not isinstance(self.pipe, Config.PIPELINES["img2img"]):
self.pipe.image_encoder = None
self.pipe.register_to_config(image_encoder=[None, None])
self.pipe.feature_extractor = None
self.pipe.unet.encoder_hid_proj = None
self.pipe.unet.config.encoder_hid_dim_type = None
self.pipe.register_to_config(feature_extractor=[None, None])
attn_procs = {}
for name, value in self.pipe.unet.attn_processors.items():
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
attn_procs[name] = (
attn_processor_class
if isinstance(value, IPAdapterAttnProcessor2_0)
else value.__class__()
)
self.pipe.unet.set_attn_processor(attn_procs)
def _flush(self):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
def _unload(self, kind="", model="", ip_adapter="", deepcache=1):
to_unload = []
if self._should_unload_deepcache(deepcache):
self._unload_deepcache()
if self._should_unload_ip_adapter(model, ip_adapter):
self._unload_ip_adapter()
to_unload.append("ip_adapter")
if self._should_unload_pipeline(kind, model):
to_unload.append("model")
to_unload.append("pipe")
for component in to_unload:
delattr(self, component)
self._flush()
for component in to_unload:
setattr(self, component, None)
def _load_ip_adapter(self, ip_adapter=""):
if not self.ip_adapter and ip_adapter:
self.log.info(f"Loading IP-Adapter: {ip_adapter}")
self.pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
)
# 50% works the best
self.pipe.set_ip_adapter_scale(0.5)
self.ip_adapter = ip_adapter
# upscalers don't need to be unloaded
def _load_upscaler(self, scale=1):
if scale == 2 and self.upscaler_2x is None:
try:
self.log.info("Loading 2x upscaler")
self.upscaler_2x = RealESRGAN(2, "cuda")
self.upscaler_2x.load_weights()
except Exception as e:
self.log.error(f"Error loading 2x upscaler: {e}")
self.upscaler_2x = None
if scale == 4 and self.upscaler_4x is None:
try:
self.log.info("Loading 4x upscaler")
self.upscaler_4x = RealESRGAN(4, "cuda")
self.upscaler_4x.load_weights()
except Exception as e:
self.log.error(f"Error loading 4x upscaler: {e}")
self.upscaler_4x = None
def _load_pipeline(
self,
kind,
model,
progress,
**kwargs,
):
pipeline = Config.PIPELINES[kind]
if self.pipe is None:
try:
start = time.perf_counter()
self.log.info(f"Loading {model}")
self.model = model
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe = pipeline.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
progress,
**kwargs,
).to("cuda")
else:
self.pipe = pipeline.from_pretrained(model, progress, **kwargs).to("cuda")
diff = time.perf_counter() - start
self.log.info(f"Loading {model} done in {diff:.2f}s")
except Exception as e:
self.log.error(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
if self.pipe is not None:
self.pipe.set_progress_bar_config(disable=progress is not None)
def _load_vae(self, taesd=False, model=""):
vae_type = type(self.pipe.vae)
is_kl = issubclass(vae_type, AutoencoderKL)
is_tiny = issubclass(vae_type, AutoencoderTiny)
# by default all models use KL
if is_kl and taesd:
self.log.info("Switching to Tiny VAE")
self.pipe.vae = AutoencoderTiny.from_pretrained(
pretrained_model_name_or_path="madebyollin/taesd",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
return
if is_tiny and not taesd:
self.log.info("Switching to KL VAE")
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe.vae = AutoencoderKL.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
else:
self.pipe.vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model,
torch_dtype=self.pipe.dtype,
subfolder="vae",
variant="fp16",
).to(self.pipe.device)
def _load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if not has_deepcache and interval == 1:
return
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
return
self.log.info("Loading DeepCache")
self.pipe.deepcache = DeepCacheSDHelper(self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
# https://github.com/ChenyangSi/FreeU
def _load_freeu(self, freeu=False):
block = self.pipe.unet.up_blocks[0]
attrs = ["b1", "b2", "s1", "s2"]
has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
if has_freeu and not freeu:
self.log.info("Disabling FreeU")
self.pipe.disable_freeu()
elif not has_freeu and freeu:
self.log.info("Enabling FreeU")
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
def load(
self,
kind,
ip_adapter,
model,
scheduler,
karras,
taesd,
freeu,
deepcache,
scale,
progress,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a", "PNDM"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
pipe_kwargs = {
"safety_checker": None,
"requires_safety_checker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
}
# diffusers fp16 variant
if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
pipe_kwargs["variant"] = "fp16"
else:
pipe_kwargs["variant"] = None
# convert fp32 to bf16 if possible
if model.lower() in ["linaqruf/anything-v3-1"]:
pipe_kwargs["torch_dtype"] = (
torch.bfloat16
if torch.cuda.get_device_properties(device).major >= 8
else torch.float16
)
else:
# defaults to float32
pipe_kwargs["torch_dtype"] = torch.float16
self._unload(kind, model, ip_adapter, deepcache)
self._load_pipeline(kind, model, progress, **pipe_kwargs)
# error loading model
if self.pipe is None:
return
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model.lower():
if not same_scheduler:
self.log.info(f"Switching to {scheduler}")
if not same_karras:
self.log.info(f"{'Enabling' if karras else 'Disabling'} Karras sigmas")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
self._load_vae(taesd, model)
self._load_upscaler(scale)
self._load_freeu(freeu)
self._load_deepcache(deepcache)
self._load_ip_adapter(ip_adapter)