diffusion / lib /loader.py
adamelliotfields's picture
Remove arrays from prompts
51fab87 verified
raw
history blame
16 kB
import gc
from threading import Lock
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import ControlNetModel
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from .config import Config
from .logger import Logger
from .upscaler import RealESRGAN
from .utils import clear_cuda_cache, safe_progress, timer
class Loader:
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.upscaler = None
cls._instance.controlnet = None
cls._instance.ip_adapter = None
cls._instance.log = Logger("Loader")
return cls._instance
@property
def _is_kl_vae(self):
if self.pipe is not None:
vae_type = type(self.pipe.vae)
return issubclass(vae_type, AutoencoderKL)
return False
@property
def _is_tiny_vae(self):
if self.pipe is not None:
vae_type = type(self.pipe.vae)
return issubclass(vae_type, AutoencoderTiny)
return False
@property
def _has_freeu(self):
if self.pipe is not None:
attrs = ["b1", "b2", "s1", "s2"]
block = self.pipe.unet.up_blocks[0]
return all(getattr(block, attr, None) is not None for attr in attrs)
return False
def _should_unload_upscaler(self, scale=1):
if self.upscaler is not None and self.upscaler.scale != scale:
return True
return False
def _should_unload_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and interval == 1:
return True
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
return True
return False
def _should_unload_freeu(self, freeu=False):
if self._has_freeu and not freeu:
return True
return False
def _should_unload_ip_adapter(self, model="", ip_adapter=""):
# unload if model changed
if self.model and self.model.lower() != model.lower():
return True
if self.ip_adapter and not ip_adapter:
return True
return False
def _should_unload_controlnet(self, kind="", controlnet=""):
if self.controlnet is None:
return False
if self.controlnet.lower() != controlnet.lower():
return True
if not kind.startswith("controlnet_"):
return True
return False
def _should_unload_pipeline(self, kind="", model="", controlnet=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
if kind == "txt2img" and not isinstance(self.pipe, Config.PIPELINES["txt2img"]):
return True
if kind == "img2img" and not isinstance(self.pipe, Config.PIPELINES["img2img"]):
return True
if kind == "controlnet_txt2img" and not isinstance(
self.pipe,
Config.PIPELINES["controlnet_txt2img"],
):
return True
if kind == "controlnet_img2img" and not isinstance(
self.pipe,
Config.PIPELINES["controlnet_img2img"],
):
return True
if self._should_unload_controlnet(kind, controlnet):
return True
return False
def _unload_upscaler(self):
if self.upscaler is not None:
with timer(f"Unloading {self.upscaler.scale}x upscaler", logger=self.log.info):
self.upscaler.to("cpu")
def _unload_deepcache(self):
if self.pipe.deepcache is not None:
self.log.info("Disabling DeepCache")
self.pipe.deepcache.disable()
delattr(self.pipe, "deepcache")
def _unload_freeu(self, freeu=False):
if self._has_freeu and not freeu:
self.log.info("Disabling FreeU")
self.pipe.disable_freeu()
# Copied from https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300
def _unload_ip_adapter(self):
if self.ip_adapter is not None:
with timer("Unloading IP-Adapter", logger=self.log.info):
if not isinstance(self.pipe, Config.PIPELINES["img2img"]):
self.pipe.image_encoder = None
self.pipe.register_to_config(image_encoder=[None, None])
self.pipe.feature_extractor = None
self.pipe.unet.encoder_hid_proj = None
self.pipe.unet.config.encoder_hid_dim_type = None
self.pipe.register_to_config(feature_extractor=[None, None])
attn_procs = {}
for name, value in self.pipe.unet.attn_processors.items():
attn_processor_class = AttnProcessor2_0() # raises if not torch 2
attn_procs[name] = (
attn_processor_class
if isinstance(value, IPAdapterAttnProcessor2_0)
else value.__class__()
)
self.pipe.unet.set_attn_processor(attn_procs)
def _unload_pipeline(self):
if self.pipe is not None:
with timer(f"Unloading {self.model}", logger=self.log.info):
self.pipe.to("cpu")
def _unload(
self,
kind="",
model="",
controlnet="",
ip_adapter="",
deepcache=1,
scale=1,
freeu=False,
):
to_unload = []
if self._should_unload_deepcache(deepcache): # remove deepcache first
self._unload_deepcache()
if self._should_unload_freeu(freeu):
self._unload_freeu()
if self._should_unload_upscaler(scale):
self._unload_upscaler()
to_unload.append("upscaler")
if self._should_unload_ip_adapter(model, ip_adapter):
self._unload_ip_adapter()
to_unload.append("ip_adapter")
if self._should_unload_controlnet(kind, controlnet):
to_unload.append("controlnet")
if self._should_unload_pipeline(kind, model, controlnet):
self._unload_pipeline()
to_unload.append("model")
to_unload.append("pipe")
clear_cuda_cache()
for component in to_unload:
setattr(self, component, None)
gc.collect()
def _should_load_upscaler(self, scale=1):
if self.upscaler is None and scale > 1:
return True
return False
def _should_load_freeu(self, freeu=False):
if not self._has_freeu and freeu:
return True
return False
def _should_load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if not has_deepcache and interval != 1:
return True
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval:
return True
return False
def _should_load_ip_adapter(self, ip_adapter=""):
if not self.ip_adapter and ip_adapter:
return True
return False
def _should_load_pipeline(self):
if self.pipe is None:
return True
return False
def _load_upscaler(self, scale=1):
if self._should_load_upscaler(scale):
try:
msg = f"Loading {scale}x upscaler"
with timer(msg, logger=self.log.info):
self.upscaler = RealESRGAN(scale, device=self.pipe.device)
self.upscaler.load_weights()
except Exception as e:
self.log.error(f"Error loading {scale}x upscaler: {e}")
self.upscaler = None
def _load_deepcache(self, interval=1):
if self._should_load_deepcache(interval):
self.log.info("Enabling DeepCache")
self.pipe.deepcache = DeepCacheSDHelper(self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
# https://github.com/ChenyangSi/FreeU
def _load_freeu(self, freeu=False):
if self._should_load_freeu(freeu):
self.log.info("Enabling FreeU")
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
def _load_ip_adapter(self, ip_adapter=""):
if self._should_load_ip_adapter(ip_adapter):
msg = "Loading IP-Adapter"
with timer(msg, logger=self.log.info):
self.pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
)
# 50% works the best
self.pipe.set_ip_adapter_scale(0.5)
self.ip_adapter = ip_adapter
def _load_pipeline(
self,
kind,
model,
progress,
**kwargs,
):
pipeline = Config.PIPELINES[kind]
if self._should_load_pipeline():
try:
with timer(f"Loading {model} ({kind})", logger=self.log.info):
self.model = model
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe = pipeline.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
progress,
**kwargs,
).to("cuda")
else:
self.pipe = pipeline.from_pretrained(model, progress, **kwargs).to("cuda")
except Exception as e:
self.log.error(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
if self.pipe is not None:
self.pipe.set_progress_bar_config(disable=progress is not None)
def _load_vae(self, taesd=False, model=""):
# by default all models use KL
if self._is_kl_vae and taesd:
msg = "Loading Tiny VAE"
with timer(msg, logger=self.log.info):
self.pipe.vae = AutoencoderTiny.from_pretrained(
pretrained_model_name_or_path="madebyollin/taesd",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
return
if self._is_tiny_vae and not taesd:
msg = "Loading KL VAE"
with timer(msg, logger=self.log.info):
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe.vae = AutoencoderKL.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
torch_dtype=self.pipe.dtype,
).to(self.pipe.device)
else:
self.pipe.vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model,
torch_dtype=self.pipe.dtype,
subfolder="vae",
variant="fp16",
).to(self.pipe.device)
def load(
self,
kind,
ip_adapter,
model,
scheduler,
annotator,
deepcache,
scale,
karras,
taesd,
freeu,
progress,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a", "PNDM"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
pipe_kwargs = {
"safety_checker": None,
"requires_safety_checker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
}
# diffusers fp16 variant
if model.lower() not in Config.MODEL_CHECKPOINTS.keys():
pipe_kwargs["variant"] = "fp16"
else:
pipe_kwargs["variant"] = None
# convert fp32 to bf16 if possible
if model.lower() in ["linaqruf/anything-v3-1"]:
pipe_kwargs["torch_dtype"] = (
torch.bfloat16
if torch.cuda.get_device_properties(device).major >= 8
else torch.float16
)
else:
# defaults to float32
pipe_kwargs["torch_dtype"] = torch.float16
# config maps the repo to the ID: canny -> lllyasviel/control_sd15_canny
if kind.startswith("controlnet_"):
pipe_kwargs["controlnet"] = ControlNetModel.from_pretrained(
Config.ANNOTATORS[annotator],
torch_dtype=torch.float16,
variant="fp16",
)
self.controlnet = annotator
self._unload(kind, model, annotator, ip_adapter, deepcache, scale, freeu)
self._load_pipeline(kind, model, progress, **pipe_kwargs)
# error loading model
if self.pipe is None:
return
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model.lower():
if not same_scheduler:
self.log.info(f"Enabling {scheduler} scheduler")
if not same_karras:
self.log.info(f"{'Enabling' if karras else 'Disabling'} Karras sigmas")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
CURRENT_STEP = 1
TOTAL_STEPS = sum(
[
self._is_kl_vae and taesd,
self._is_tiny_vae and not taesd,
self._should_load_freeu(freeu),
self._should_load_deepcache(deepcache),
self._should_load_ip_adapter(ip_adapter),
self._should_load_upscaler(scale),
]
)
desc = "Configuring pipeline"
if not self._has_freeu and freeu:
self._load_freeu(freeu)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._should_load_deepcache(deepcache):
self._load_deepcache(deepcache)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._should_load_ip_adapter(ip_adapter):
self._load_ip_adapter(ip_adapter)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._should_load_upscaler(scale):
self._load_upscaler(scale)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)
CURRENT_STEP += 1
if self._is_kl_vae and taesd or self._is_tiny_vae and not taesd:
self._load_vae(taesd, model)
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc)