adamelliotfields commited on
Commit
effc0a0
·
verified ·
1 Parent(s): 7a7cda5

Improve navigation

Browse files
Files changed (4) hide show
  1. DOCS.md +25 -27
  2. app.css +5 -18
  3. app.py +228 -326
  4. partials/intro.html +3 -14
DOCS.md CHANGED
@@ -1,14 +1,14 @@
1
- # Diffusion ZERO
2
 
3
  TL;DR: Enter a prompt or roll the `🎲` and press `Generate`.
4
 
5
- ## Prompting
6
 
7
  Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more.
8
 
9
  Use `+` or `-` to increase the weight of a token. The weight grows exponentially when chained. For example, `blue+` means 1.1x more attention is given to `blue`, while `blue++` means 1.1^2 more, and so on. The same applies to `-`.
10
 
11
- For groups of tokens, wrap them in parentheses and multiply by a float between 0 and 2. For example, `a (birthday cake)1.3 on a table` will increase the weight of both `birthday` and `cake` by 1.3x. This also means the entire scene will be more birthday-like, not just the cake. To counteract this, you can use `-` inside the parentheses on specific tokens, e.g., `a (birthday-- cake)1.3`, to reduce the birthday aspect.
12
 
13
  This is the same syntax used in [InvokeAI](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/) and it differs from AUTOMATIC1111:
14
 
@@ -19,13 +19,13 @@ This is the same syntax used in [InvokeAI](https://invoke-ai.github.io/InvokeAI/
19
  | `(blue)1.2` | `(blue:1.2)` |
20
  | `(blue)0.8` | `(blue:0.8)` |
21
 
22
- ### Arrays
23
 
24
  Arrays allow you to generate multiple different images from a single prompt. For example, `an adult [[blonde,brunette]] [[man,woman]]` will expand into **4** different prompts. This implementation was inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).
25
 
26
  > NB: Make sure to set `Images` to the number of images you want to generate. Otherwise, only the first prompt will be used.
27
 
28
- ## Models
29
 
30
  Each model checkpoint has a different aesthetic:
31
 
@@ -38,7 +38,7 @@ Each model checkpoint has a different aesthetic:
38
  * [SG161222/Realistic_Vision_V5](https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE): realistic
39
  * [XpucT/Deliberate_v6](https://huggingface.co/XpucT/Deliberate): general purpose stylized
40
 
41
- ## LoRA
42
 
43
  Apply up to 2 LoRA (low-rank adaptation) adapters with adjustable strength:
44
 
@@ -47,7 +47,7 @@ Apply up to 2 LoRA (low-rank adaptation) adapters with adjustable strength:
47
 
48
  > NB: The trigger words are automatically appended to the positive prompt for you.
49
 
50
- ## Embeddings
51
 
52
  Select one or more [textual inversion](https://huggingface.co/docs/diffusers/en/using-diffusers/textual_inversion_inference) embeddings:
53
 
@@ -57,13 +57,13 @@ Select one or more [textual inversion](https://huggingface.co/docs/diffusers/en/
57
 
58
  > NB: The trigger token is automatically appended to the negative prompt for you.
59
 
60
- ## Styles
61
 
62
  [Styles](https://huggingface.co/spaces/adamelliotfields/diffusion/blob/main/data/styles.json) are prompt templates that wrap your positive and negative prompts. They were originally derived from the [twri/sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node, but have since been entirely rewritten.
63
 
64
  Start by framing a simple subject like `portrait of a young adult woman` or `landscape of a mountain range` and experiment.
65
 
66
- ### Anime
67
 
68
  The `Anime: *` styles work the best with Dreamshaper. When using the anime-specific Anything model, you should use the `Anime: Anything` style with the following settings:
69
 
@@ -73,37 +73,35 @@ The `Anime: *` styles work the best with Dreamshaper. When using the anime-speci
73
 
74
  You subject should be a few simple tokens like `girl, brunette, blue eyes, armor, nebula, celestial`. Experiment with `Clip Skip` and `Karras`. Finish with the `Perfection Style` LoRA on a moderate setting and upscale.
75
 
76
- ## Scale
77
 
78
  Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) with weights from [ai-forever](ai-forever/Real-ESRGAN). Necessary for high-resolution images.
79
 
80
- ## Image-to-Image
81
 
82
  The `🖼️ Image` tab enables the image-to-image and IP-Adapter pipelines.
83
 
84
- ### Strength
85
 
86
- Denoising strength is essentially how much the generation will differ from the input image. A value of `0` will be identical to the original, while `1` will be a completely new image. You may want to also increase the number of inference steps. Only applies to the image-to-image input.
87
 
88
- ### IP-Adapter
89
 
90
- In an image-to-image pipeline, the input image is used as the initial latent. With [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), the input image is processed by a separate image encoder and the encoded features are used as conditioning along with the text prompt.
91
-
92
- For capturing faces, enable `IP-Adapter Face` to use the full-face model. You should use an input image that is mostly a face and it should be high quality. You can generate fake portraits with Realistic Vision to experiment. Note that you'll never get true identity preservation without an advanced pipeline like [InstantID](https://github.com/instantX-research/InstantID), which combines many techniques.
93
 
94
- ## ControlNet
95
 
96
- The `🎮 Control` tab enables the [ControlNet](https://github.com/lllyasviel/ControlNet) pipelines. Read the [Diffusers docs](https://huggingface.co/docs/diffusers/using-diffusers/controlnet) to learn more.
97
 
98
- ### Annotators
99
 
100
- In ControlNet, the input image is a feature map produced by an _annotator_. These are computer vision models used for tasks like edge detection and pose estimation. ControlNet models are trained to understand these feature maps.
101
 
102
- > NB: Control images will be automatically resized to the nearest multiple of 64 (e.g., 513 -> 512).
103
 
104
- ## Advanced
105
 
106
- ### DeepCache
107
 
108
  [DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
109
  * `1`: no caching (default)
@@ -111,14 +109,14 @@ In ControlNet, the input image is a feature map produced by an _annotator_. Thes
111
  * `3`: balanced
112
  * `4`: more speed
113
 
114
- ### FreeU
115
 
116
  [FreeU](https://github.com/ChenyangSi/FreeU) re-weights the contributions sourced from the UNet’s skip connections and backbone feature maps. Can sometimes improve image quality.
117
 
118
- ### Clip Skip
119
 
120
  When enabled, the last CLIP layer is skipped. Can sometimes improve image quality.
121
 
122
- ### Tiny VAE
123
 
124
  Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for near-instant latent decoding with a minor loss in detail. Useful for development.
 
1
+ ## Usage
2
 
3
  TL;DR: Enter a prompt or roll the `🎲` and press `Generate`.
4
 
5
+ ### Prompting
6
 
7
  Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more.
8
 
9
  Use `+` or `-` to increase the weight of a token. The weight grows exponentially when chained. For example, `blue+` means 1.1x more attention is given to `blue`, while `blue++` means 1.1^2 more, and so on. The same applies to `-`.
10
 
11
+ Groups of tokens can be weighted together by wrapping in parantheses and multiplying by a float between 0 and 2. For example, `(masterpiece, best quality)1.2` will increase the weight of both `masterpiece` and `best quality` by 1.2x.
12
 
13
  This is the same syntax used in [InvokeAI](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/) and it differs from AUTOMATIC1111:
14
 
 
19
  | `(blue)1.2` | `(blue:1.2)` |
20
  | `(blue)0.8` | `(blue:0.8)` |
21
 
22
+ #### Arrays
23
 
24
  Arrays allow you to generate multiple different images from a single prompt. For example, `an adult [[blonde,brunette]] [[man,woman]]` will expand into **4** different prompts. This implementation was inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).
25
 
26
  > NB: Make sure to set `Images` to the number of images you want to generate. Otherwise, only the first prompt will be used.
27
 
28
+ ### Models
29
 
30
  Each model checkpoint has a different aesthetic:
31
 
 
38
  * [SG161222/Realistic_Vision_V5](https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE): realistic
39
  * [XpucT/Deliberate_v6](https://huggingface.co/XpucT/Deliberate): general purpose stylized
40
 
41
+ ### LoRA
42
 
43
  Apply up to 2 LoRA (low-rank adaptation) adapters with adjustable strength:
44
 
 
47
 
48
  > NB: The trigger words are automatically appended to the positive prompt for you.
49
 
50
+ ### Embeddings
51
 
52
  Select one or more [textual inversion](https://huggingface.co/docs/diffusers/en/using-diffusers/textual_inversion_inference) embeddings:
53
 
 
57
 
58
  > NB: The trigger token is automatically appended to the negative prompt for you.
59
 
60
+ ### Styles
61
 
62
  [Styles](https://huggingface.co/spaces/adamelliotfields/diffusion/blob/main/data/styles.json) are prompt templates that wrap your positive and negative prompts. They were originally derived from the [twri/sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node, but have since been entirely rewritten.
63
 
64
  Start by framing a simple subject like `portrait of a young adult woman` or `landscape of a mountain range` and experiment.
65
 
66
+ #### Anime
67
 
68
  The `Anime: *` styles work the best with Dreamshaper. When using the anime-specific Anything model, you should use the `Anime: Anything` style with the following settings:
69
 
 
73
 
74
  You subject should be a few simple tokens like `girl, brunette, blue eyes, armor, nebula, celestial`. Experiment with `Clip Skip` and `Karras`. Finish with the `Perfection Style` LoRA on a moderate setting and upscale.
75
 
76
+ ### Scale
77
 
78
  Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) with weights from [ai-forever](ai-forever/Real-ESRGAN). Necessary for high-resolution images.
79
 
80
+ ### Image-to-Image
81
 
82
  The `🖼️ Image` tab enables the image-to-image and IP-Adapter pipelines.
83
 
84
+ #### Strength
85
 
86
+ Initial image strength (known as _denoising strength_) is essentially how much the generation will differ from the input image. A value of `0` will be identical to the original, while `1` will be a completely new image. You may want to also increase the number of inference steps.
87
 
88
+ > 💡 Denoising strength only applies to the `Initial Image` input; it doesn't affect ControlNet or IP-Adapter.
89
 
90
+ #### ControlNet
 
 
91
 
92
+ In [ControlNet](https://github.com/lllyasviel/ControlNet), the input image is used to get a feature map from an _annotator_. These are computer vision models used for tasks like edge detection and pose estimation. ControlNet models are trained to understand these feature maps. Read the [Diffusers docs](https://huggingface.co/docs/diffusers/using-diffusers/controlnet) to learn more.
93
 
94
+ Currently, the only annotator available is [Canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny) (edge detection).
95
 
96
+ #### IP-Adapter
97
 
98
+ In an image-to-image pipeline, the input image is used as the initial latent. With [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), the input image is processed by a separate image encoder and the encoded features are used as conditioning along with the text prompt.
99
 
100
+ For capturing faces, enable `IP-Adapter Face` to use the full-face model. You should use an input image that is mostly a face and it should be high quality. You can generate fake portraits with Realistic Vision to experiment.
101
 
102
+ ### Advanced
103
 
104
+ #### DeepCache
105
 
106
  [DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
107
  * `1`: no caching (default)
 
109
  * `3`: balanced
110
  * `4`: more speed
111
 
112
+ #### FreeU
113
 
114
  [FreeU](https://github.com/ChenyangSi/FreeU) re-weights the contributions sourced from the UNet’s skip connections and backbone feature maps. Can sometimes improve image quality.
115
 
116
+ #### Clip Skip
117
 
118
  When enabled, the last CLIP layer is skipped. Can sometimes improve image quality.
119
 
120
+ #### Tiny VAE
121
 
122
  Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for near-instant latent decoding with a minor loss in detail. Useful for development.
app.css CHANGED
@@ -67,24 +67,6 @@
67
  #intro > div > svg:is(.dark *) {
68
  fill: #10b981 !important;
69
  }
70
- #intro nav {
71
- display: flex;
72
- column-gap: 0.5rem;
73
- }
74
- #intro nav a, #intro nav span {
75
- white-space: nowrap;
76
- font-family: monospace;
77
- }
78
- #intro nav span {
79
- font-weight: 500;
80
- color: var(--body-text-color);
81
- }
82
- #intro nav a {
83
- color: var(--body-text-color-subdued);
84
- }
85
- #intro nav a:hover {
86
- color: var(--body-text-color);
87
- }
88
 
89
  .popover {
90
  position: relative;
@@ -117,6 +99,11 @@
117
  content: var(--seed, "-1");
118
  }
119
 
 
 
 
 
 
120
  .tabs, .tabitem, .tab-nav, .tab-nav > .selected {
121
  border-width: 0px;
122
  }
 
67
  #intro > div > svg:is(.dark *) {
68
  fill: #10b981 !important;
69
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  .popover {
72
  position: relative;
 
99
  content: var(--seed, "-1");
100
  }
101
 
102
+ #settings h3 {
103
+ color: var(--block-title-text-color) !important;
104
+ margin-top: 8px !important;
105
+ }
106
+
107
  .tabs, .tabitem, .tab-nav, .tab-nav > .selected {
108
  border-width: 0px;
109
  }
app.py CHANGED
@@ -15,7 +15,16 @@ from lib import (
15
  read_file,
16
  )
17
 
18
- # the CSS `content` attribute expects a string so we need to wrap the number in quotes
 
 
 
 
 
 
 
 
 
19
  refresh_seed_js = """
20
  () => {
21
  const n = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER);
@@ -25,14 +34,7 @@ refresh_seed_js = """
25
  }
26
  """
27
 
28
- seed_js = """
29
- (seed) => {
30
- const button = document.getElementById("refresh");
31
- button.style.setProperty("--seed", `"${seed}"`);
32
- return seed;
33
- }
34
- """
35
-
36
  aspect_ratio_js = """
37
  (ar, w, h) => {
38
  if (!ar) return [w, h];
@@ -42,46 +44,27 @@ aspect_ratio_js = """
42
  """
43
 
44
 
45
- def image_prompt_fn(images, locked=False):
46
- if locked:
47
- return gr.Dropdown(
48
- choices=[("🔒", -2)],
49
- interactive=False,
50
- value=-2,
51
- )
52
- else:
53
- return gr.Dropdown(
54
- choices=[("None", -1)] + [(str(i + 1), i) for i, _ in enumerate(images or [])],
55
- interactive=True,
56
- value=-1,
57
- )
58
-
59
-
60
- async def gallery_fn(images, image, control_image, ip_image):
61
- return (
62
- image_prompt_fn(images, locked=image is not None),
63
- image_prompt_fn(images, locked=control_image is not None),
64
- image_prompt_fn(images, locked=ip_image is not None),
65
- )
66
-
67
-
68
- # Handle selecting an image from the gallery:
69
- # * -2 is the lock icon
70
- # * -1 is None
71
- async def image_select_fn(images, image, i):
72
- if i == -2:
73
- return gr.Image(image)
74
- if i == -1:
75
- return gr.Image(None)
76
- return gr.Image(images[i][0]) if i > -1 else None
77
 
78
 
 
79
  async def random_fn():
80
  prompts = read_file("data/prompts.json")
81
  prompts = json.loads(prompts)
82
  return gr.Textbox(value=random.choice(prompts))
83
 
84
 
 
85
  async def generate_fn(*args, progress=gr.Progress(track_tqdm=True)):
86
  if len(args) > 0:
87
  prompt = args[0]
@@ -90,11 +73,11 @@ async def generate_fn(*args, progress=gr.Progress(track_tqdm=True)):
90
  if prompt is None or prompt.strip() == "":
91
  raise gr.Error("You must enter a prompt")
92
 
93
- # always the last arguments
94
  DISABLE_IMAGE_PROMPT, DISABLE_CONTROL_IMAGE_PROMPT, DISABLE_IP_IMAGE_PROMPT = args[-3:]
95
  gen_args = list(args[:-3])
96
 
97
- # the first two arguments are the prompt and negative prompt
98
  if DISABLE_IMAGE_PROMPT:
99
  gen_args[2] = None
100
  if DISABLE_CONTROL_IMAGE_PROMPT:
@@ -106,7 +89,7 @@ async def generate_fn(*args, progress=gr.Progress(track_tqdm=True)):
106
  if Config.ZERO_GPU:
107
  progress((0, 100), desc="ZeroGPU init")
108
 
109
- # the remaining arguments are the alert handlers and progress bar
110
  images = await async_call(
111
  generate,
112
  *gen_args,
@@ -144,7 +127,7 @@ with gr.Blocks(
144
  block_background_fill_dark=gr.themes.colors.gray.c900,
145
  ),
146
  ) as demo:
147
- # override image inputs without clearing them
148
  DISABLE_IMAGE_PROMPT = gr.State(False)
149
  DISABLE_IP_IMAGE_PROMPT = gr.State(False)
150
  DISABLE_CONTROL_IMAGE_PROMPT = gr.State(False)
@@ -152,7 +135,7 @@ with gr.Blocks(
152
  gr.HTML(read_file("./partials/intro.html"))
153
 
154
  with gr.Tabs():
155
- with gr.TabItem("🏠 Text"):
156
  with gr.Column():
157
  output_images = gr.Gallery(
158
  elem_classes=["gallery"],
@@ -172,8 +155,6 @@ with gr.Blocks(
172
  max_lines=3,
173
  lines=3,
174
  )
175
-
176
- # Buttons
177
  with gr.Row():
178
  generate_btn = gr.Button("Generate", variant="primary")
179
  random_btn = gr.Button(
@@ -199,8 +180,187 @@ with gr.Blocks(
199
  value="🗑️",
200
  )
201
 
202
- # img2img tab
203
- with gr.TabItem("🖼️ Image"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  with gr.Row():
205
  image_prompt = gr.Image(
206
  show_share_button=False,
@@ -224,36 +384,6 @@ with gr.Blocks(
224
  format="png",
225
  type="pil",
226
  )
227
-
228
- with gr.Row():
229
- image_select = gr.Dropdown(
230
- info="Use a gallery image for initial latents",
231
- choices=[("None", -1)],
232
- label="Initial Image",
233
- interactive=True,
234
- filterable=False,
235
- min_width=100,
236
- value=-1,
237
- )
238
- control_image_select = gr.Dropdown(
239
- info="Use a gallery image for ControlNet",
240
- label="ControlNet Image",
241
- choices=[("None", -1)],
242
- interactive=True,
243
- filterable=False,
244
- min_width=100,
245
- value=-1,
246
- )
247
- ip_image_select = gr.Dropdown(
248
- info="Use a gallery image for IP-Adapter",
249
- label="IP-Adapter Image",
250
- choices=[("None", -1)],
251
- interactive=True,
252
- filterable=False,
253
- min_width=100,
254
- value=-1,
255
- )
256
-
257
  with gr.Row():
258
  denoising_strength = gr.Slider(
259
  label="Initial Image Strength",
@@ -269,7 +399,6 @@ with gr.Blocks(
269
  value=Config.ANNOTATOR,
270
  filterable=False,
271
  )
272
-
273
  with gr.Row():
274
  disable_image = gr.Checkbox(
275
  label="Disable Initial Image",
@@ -292,202 +421,19 @@ with gr.Blocks(
292
  value=False,
293
  )
294
 
295
- with gr.TabItem("⚙️ Menu"):
296
- with gr.Group():
297
- negative_prompt = gr.Textbox(
298
- label="Negative Prompt",
299
- value="nsfw+",
300
- lines=2,
301
- )
302
-
303
- with gr.Row():
304
- model = gr.Dropdown(
305
- choices=Config.MODELS,
306
- value=Config.MODEL,
307
- filterable=False,
308
- label="Model",
309
- min_width=240,
310
- )
311
- scheduler = gr.Dropdown(
312
- choices=Config.SCHEDULERS.keys(),
313
- value=Config.SCHEDULER,
314
- elem_id="scheduler",
315
- label="Scheduler",
316
- filterable=False,
317
- )
318
-
319
- with gr.Row():
320
- styles = json.loads(read_file("data/styles.json"))
321
- style_ids = list(styles.keys())
322
- style_ids = [sid for sid in style_ids if not sid.startswith("_")]
323
- style = gr.Dropdown(
324
- value=Config.STYLE,
325
- label="Style",
326
- min_width=240,
327
- choices=[("None", "none")]
328
- + [(styles[sid]["name"], sid) for sid in style_ids],
329
- )
330
- embeddings = gr.Dropdown(
331
- elem_id="embeddings",
332
- label="Embeddings",
333
- choices=[(f"<{e}>", e) for e in Config.EMBEDDINGS],
334
- multiselect=True,
335
- value=[Config.EMBEDDING],
336
- min_width=240,
337
- )
338
-
339
- with gr.Row():
340
- with gr.Group(elem_classes=["gap-0"]):
341
- lora_1 = gr.Dropdown(
342
- min_width=240,
343
- label="LoRA #1",
344
- value="none",
345
- choices=[("None", "none")]
346
- + [
347
- (lora["name"], lora_id)
348
- for lora_id, lora in Config.CIVIT_LORAS.items()
349
- ],
350
- )
351
- lora_1_weight = gr.Slider(
352
- value=0.0,
353
- minimum=0.0,
354
- maximum=1.0,
355
- step=0.1,
356
- show_label=False,
357
- )
358
- with gr.Group(elem_classes=["gap-0"]):
359
- lora_2 = gr.Dropdown(
360
- min_width=240,
361
- label="LoRA #2",
362
- value="none",
363
- choices=[("None", "none")]
364
- + [
365
- (lora["name"], lora_id)
366
- for lora_id, lora in Config.CIVIT_LORAS.items()
367
- ],
368
- )
369
- lora_2_weight = gr.Slider(
370
- value=0.0,
371
- minimum=0.0,
372
- maximum=1.0,
373
- step=0.1,
374
- show_label=False,
375
- )
376
-
377
- with gr.Row():
378
- guidance_scale = gr.Slider(
379
- value=Config.GUIDANCE_SCALE,
380
- label="Guidance Scale",
381
- minimum=1.0,
382
- maximum=15.0,
383
- step=0.1,
384
- )
385
- inference_steps = gr.Slider(
386
- value=Config.INFERENCE_STEPS,
387
- label="Inference Steps",
388
- minimum=1,
389
- maximum=50,
390
- step=1,
391
- )
392
- deepcache_interval = gr.Slider(
393
- value=Config.DEEPCACHE_INTERVAL,
394
- label="DeepCache",
395
- minimum=1,
396
- maximum=4,
397
- step=1,
398
- )
399
-
400
- with gr.Row():
401
- width = gr.Slider(
402
- value=Config.WIDTH,
403
- label="Width",
404
- minimum=256,
405
- maximum=768,
406
- step=32,
407
- )
408
- height = gr.Slider(
409
- value=Config.HEIGHT,
410
- label="Height",
411
- minimum=256,
412
- maximum=768,
413
- step=32,
414
- )
415
- aspect_ratio = gr.Dropdown(
416
- value=f"{Config.WIDTH},{Config.HEIGHT}",
417
- label="Aspect Ratio",
418
- filterable=False,
419
- choices=[
420
- ("Custom", None),
421
- ("4:7 (384x672)", "384,672"),
422
- ("7:9 (448x576)", "448,576"),
423
- ("1:1 (512x512)", "512,512"),
424
- ("9:7 (576x448)", "576,448"),
425
- ("7:4 (672x384)", "672,384"),
426
- ],
427
- )
428
-
429
- with gr.Row():
430
- file_format = gr.Dropdown(
431
- choices=["png", "jpeg", "webp"],
432
- label="File Format",
433
- filterable=False,
434
- value="png",
435
- )
436
- num_images = gr.Dropdown(
437
- choices=list(range(1, 5)),
438
- value=Config.NUM_IMAGES,
439
- filterable=False,
440
- label="Images",
441
- )
442
- scale = gr.Dropdown(
443
- choices=[(f"{s}x", s) for s in Config.SCALES],
444
- filterable=False,
445
- value=Config.SCALE,
446
- label="Scale",
447
- )
448
- seed = gr.Number(
449
- value=Config.SEED,
450
- label="Seed",
451
- minimum=-1,
452
- maximum=(2**64) - 1,
453
- )
454
-
455
- with gr.Row():
456
- use_karras = gr.Checkbox(
457
- elem_classes=["checkbox"],
458
- label="Karras σ",
459
- value=True,
460
- )
461
- use_taesd = gr.Checkbox(
462
- elem_classes=["checkbox"],
463
- label="Tiny VAE",
464
- value=False,
465
- )
466
- use_freeu = gr.Checkbox(
467
- elem_classes=["checkbox"],
468
- label="FreeU",
469
- value=False,
470
- )
471
- use_clip_skip = gr.Checkbox(
472
- elem_classes=["checkbox"],
473
- label="Clip skip",
474
- value=False,
475
- )
476
 
 
477
  random_btn.click(random_fn, inputs=[], outputs=[prompt], show_api=False)
478
 
 
479
  refresh_btn.click(None, inputs=[], outputs=[seed], js=refresh_seed_js)
480
 
 
481
  seed.change(None, inputs=[seed], outputs=[], js=seed_js)
482
 
483
- # input events are only user input; change events are both user and programmatic
484
- aspect_ratio.input(
485
- None,
486
- inputs=[aspect_ratio, width, height],
487
- outputs=[width, height],
488
- js=aspect_ratio_js,
489
- )
490
-
491
  file_format.change(
492
  lambda f: (
493
  gr.Gallery(format=f),
@@ -500,76 +446,32 @@ with gr.Blocks(
500
  show_api=False,
501
  )
502
 
503
- # lock the input images so you don't lose them when the gallery updates
504
- output_images.change(
505
- gallery_fn,
506
- inputs=[output_images, image_prompt, control_image_prompt, ip_image_prompt],
507
- outputs=[image_select, control_image_select, ip_image_select],
508
- show_api=False,
509
- )
510
-
511
- # show the selected image in the image input
512
- image_select.change(
513
- image_select_fn,
514
- inputs=[output_images, image_prompt, image_select],
515
- outputs=[image_prompt],
516
- show_api=False,
517
- )
518
- control_image_select.change(
519
- image_select_fn,
520
- inputs=[output_images, control_image_prompt, control_image_select],
521
- outputs=[control_image_prompt],
522
- show_api=False,
523
- )
524
- ip_image_select.change(
525
- image_select_fn,
526
- inputs=[output_images, ip_image_prompt, ip_image_select],
527
- outputs=[ip_image_prompt],
528
- show_api=False,
529
- )
530
-
531
- # reset the dropdown on clear
532
- image_prompt.clear(
533
- image_prompt_fn,
534
- inputs=[output_images],
535
- outputs=[image_select],
536
- show_api=False,
537
- )
538
- control_image_prompt.clear(
539
- image_prompt_fn,
540
- inputs=[output_images],
541
- outputs=[control_image_select],
542
- show_api=False,
543
- )
544
- ip_image_prompt.clear(
545
- image_prompt_fn,
546
- inputs=[output_images],
547
- outputs=[ip_image_select],
548
- show_api=False,
549
  )
550
 
551
- # show "Custom" aspect ratio when manually changing width or height
552
  gr.on(
553
  triggers=[width.input, height.input],
554
  fn=None,
555
- inputs=[],
556
  outputs=[aspect_ratio],
557
- js="() => { return null; }",
558
  )
559
 
560
- # toggle image prompts by updating session state
561
  gr.on(
562
  triggers=[disable_image.input, disable_control_image.input, disable_ip_image.input],
563
- fn=lambda disable_image, disable_control_image, disable_ip_image: (
564
- disable_image,
565
- disable_control_image,
566
- disable_ip_image,
567
- ),
568
  inputs=[disable_image, disable_control_image, disable_ip_image],
569
  outputs=[DISABLE_IMAGE_PROMPT, DISABLE_CONTROL_IMAGE_PROMPT, DISABLE_IP_IMAGE_PROMPT],
570
  )
571
 
572
- # generate images
573
  gr.on(
574
  triggers=[generate_btn.click, prompt.submit],
575
  fn=generate_fn,
 
15
  read_file,
16
  )
17
 
18
+ # Update refresh button hover text
19
+ seed_js = """
20
+ (seed) => {
21
+ const button = document.getElementById("refresh");
22
+ button.style.setProperty("--seed", `"${seed}"`);
23
+ return seed;
24
+ }
25
+ """
26
+
27
+ # The CSS `content` attribute expects a string so we need to wrap the number in quotes
28
  refresh_seed_js = """
29
  () => {
30
  const n = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER);
 
34
  }
35
  """
36
 
37
+ # Update width and height on aspect ratio change
 
 
 
 
 
 
 
38
  aspect_ratio_js = """
39
  (ar, w, h) => {
40
  if (!ar) return [w, h];
 
44
  """
45
 
46
 
47
+ # Show "Custom" aspect ratio when manually changing width or height, or one of the predefined ones
48
+ custom_aspect_ratio_js = """
49
+ (w, h) => {
50
+ if (w === 384 && h === 672) return "384,672";
51
+ if (w === 448 && h === 576) return "448,576";
52
+ if (w === 512 && h === 512) return "512,512";
53
+ if (w === 576 && h === 448) return "576,448";
54
+ if (w === 672 && h === 384) return "672,384";
55
+ return null;
56
+ }
57
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
 
60
+ # Random prompt function
61
  async def random_fn():
62
  prompts = read_file("data/prompts.json")
63
  prompts = json.loads(prompts)
64
  return gr.Textbox(value=random.choice(prompts))
65
 
66
 
67
+ # Transform the raw inputs before generation
68
  async def generate_fn(*args, progress=gr.Progress(track_tqdm=True)):
69
  if len(args) > 0:
70
  prompt = args[0]
 
73
  if prompt is None or prompt.strip() == "":
74
  raise gr.Error("You must enter a prompt")
75
 
76
+ # These are always the last arguments
77
  DISABLE_IMAGE_PROMPT, DISABLE_CONTROL_IMAGE_PROMPT, DISABLE_IP_IMAGE_PROMPT = args[-3:]
78
  gen_args = list(args[:-3])
79
 
80
+ # First two arguments are the prompt and negative prompt
81
  if DISABLE_IMAGE_PROMPT:
82
  gen_args[2] = None
83
  if DISABLE_CONTROL_IMAGE_PROMPT:
 
89
  if Config.ZERO_GPU:
90
  progress((0, 100), desc="ZeroGPU init")
91
 
92
+ # Remaining arguments are the alert handlers and progress bar
93
  images = await async_call(
94
  generate,
95
  *gen_args,
 
127
  block_background_fill_dark=gr.themes.colors.gray.c900,
128
  ),
129
  ) as demo:
130
+ # Disable image inputs without clearing them
131
  DISABLE_IMAGE_PROMPT = gr.State(False)
132
  DISABLE_IP_IMAGE_PROMPT = gr.State(False)
133
  DISABLE_CONTROL_IMAGE_PROMPT = gr.State(False)
 
135
  gr.HTML(read_file("./partials/intro.html"))
136
 
137
  with gr.Tabs():
138
+ with gr.TabItem("🏠 Home"):
139
  with gr.Column():
140
  output_images = gr.Gallery(
141
  elem_classes=["gallery"],
 
155
  max_lines=3,
156
  lines=3,
157
  )
 
 
158
  with gr.Row():
159
  generate_btn = gr.Button("Generate", variant="primary")
160
  random_btn = gr.Button(
 
180
  value="🗑️",
181
  )
182
 
183
+ with gr.TabItem("⚙️ Settings", elem_id="settings"):
184
+ # Prompt settings
185
+ gr.HTML("<h3>Prompt</h3>")
186
+ with gr.Row():
187
+ negative_prompt = gr.Textbox(
188
+ label="Negative Prompt",
189
+ value="nsfw+",
190
+ lines=1,
191
+ )
192
+ styles = json.loads(read_file("data/styles.json"))
193
+ style_ids = list(styles.keys())
194
+ style_ids = [sid for sid in style_ids if not sid.startswith("_")]
195
+ style = gr.Dropdown(
196
+ value=Config.STYLE,
197
+ label="Style Template",
198
+ choices=[("None", "none")] + [(styles[sid]["name"], sid) for sid in style_ids],
199
+ )
200
+
201
+ # Model settings
202
+ gr.HTML("<h3>Model</h3>")
203
+ with gr.Row():
204
+ model = gr.Dropdown(
205
+ choices=Config.MODELS,
206
+ value=Config.MODEL,
207
+ filterable=False,
208
+ label="Checkpoint",
209
+ min_width=240,
210
+ )
211
+ scheduler = gr.Dropdown(
212
+ choices=Config.SCHEDULERS.keys(),
213
+ value=Config.SCHEDULER,
214
+ elem_id="scheduler",
215
+ label="Scheduler",
216
+ filterable=False,
217
+ )
218
+ with gr.Row():
219
+ embeddings = gr.Dropdown(
220
+ elem_id="embeddings",
221
+ label="Embeddings",
222
+ choices=[(f"<{e}>", e) for e in Config.EMBEDDINGS],
223
+ multiselect=True,
224
+ value=[Config.EMBEDDING],
225
+ min_width=240,
226
+ )
227
+ with gr.Row():
228
+ with gr.Group(elem_classes=["gap-0"]):
229
+ lora_1 = gr.Dropdown(
230
+ min_width=240,
231
+ label="LoRA #1",
232
+ value="none",
233
+ choices=[("None", "none")]
234
+ + [
235
+ (lora["name"], lora_id) for lora_id, lora in Config.CIVIT_LORAS.items()
236
+ ],
237
+ )
238
+ lora_1_weight = gr.Slider(
239
+ value=0.0,
240
+ minimum=0.0,
241
+ maximum=1.0,
242
+ step=0.1,
243
+ show_label=False,
244
+ )
245
+ with gr.Group(elem_classes=["gap-0"]):
246
+ lora_2 = gr.Dropdown(
247
+ min_width=240,
248
+ label="LoRA #2",
249
+ value="none",
250
+ choices=[("None", "none")]
251
+ + [
252
+ (lora["name"], lora_id) for lora_id, lora in Config.CIVIT_LORAS.items()
253
+ ],
254
+ )
255
+ lora_2_weight = gr.Slider(
256
+ value=0.0,
257
+ minimum=0.0,
258
+ maximum=1.0,
259
+ step=0.1,
260
+ show_label=False,
261
+ )
262
+
263
+ # Generation settings
264
+ gr.HTML("<h3>Generation</h3>")
265
+ with gr.Row():
266
+ guidance_scale = gr.Slider(
267
+ value=Config.GUIDANCE_SCALE,
268
+ label="Guidance Scale",
269
+ minimum=1.0,
270
+ maximum=15.0,
271
+ step=0.1,
272
+ )
273
+ inference_steps = gr.Slider(
274
+ value=Config.INFERENCE_STEPS,
275
+ label="Inference Steps",
276
+ minimum=1,
277
+ maximum=50,
278
+ step=1,
279
+ )
280
+ deepcache_interval = gr.Slider(
281
+ value=Config.DEEPCACHE_INTERVAL,
282
+ label="DeepCache",
283
+ minimum=1,
284
+ maximum=4,
285
+ step=1,
286
+ )
287
+ with gr.Row():
288
+ width = gr.Slider(
289
+ value=Config.WIDTH,
290
+ label="Width",
291
+ minimum=256,
292
+ maximum=768,
293
+ step=32,
294
+ )
295
+ height = gr.Slider(
296
+ value=Config.HEIGHT,
297
+ label="Height",
298
+ minimum=256,
299
+ maximum=768,
300
+ step=32,
301
+ )
302
+ aspect_ratio = gr.Dropdown(
303
+ value=f"{Config.WIDTH},{Config.HEIGHT}",
304
+ label="Aspect Ratio",
305
+ filterable=False,
306
+ choices=[
307
+ ("Custom", None),
308
+ ("4:7 (384x672)", "384,672"),
309
+ ("7:9 (448x576)", "448,576"),
310
+ ("1:1 (512x512)", "512,512"),
311
+ ("9:7 (576x448)", "576,448"),
312
+ ("7:4 (672x384)", "672,384"),
313
+ ],
314
+ )
315
+ with gr.Row():
316
+ file_format = gr.Dropdown(
317
+ choices=["png", "jpeg", "webp"],
318
+ label="File Format",
319
+ filterable=False,
320
+ value="png",
321
+ )
322
+ num_images = gr.Dropdown(
323
+ choices=list(range(1, 5)),
324
+ value=Config.NUM_IMAGES,
325
+ filterable=False,
326
+ label="Images",
327
+ )
328
+ scale = gr.Dropdown(
329
+ choices=[(f"{s}x", s) for s in Config.SCALES],
330
+ filterable=False,
331
+ value=Config.SCALE,
332
+ label="Scale",
333
+ )
334
+ seed = gr.Number(
335
+ value=Config.SEED,
336
+ label="Seed",
337
+ minimum=-1,
338
+ maximum=(2**64) - 1,
339
+ )
340
+ with gr.Row():
341
+ use_karras = gr.Checkbox(
342
+ elem_classes=["checkbox"],
343
+ label="Karras σ",
344
+ value=True,
345
+ )
346
+ use_taesd = gr.Checkbox(
347
+ elem_classes=["checkbox"],
348
+ label="Tiny VAE",
349
+ value=False,
350
+ )
351
+ use_freeu = gr.Checkbox(
352
+ elem_classes=["checkbox"],
353
+ label="FreeU",
354
+ value=False,
355
+ )
356
+ use_clip_skip = gr.Checkbox(
357
+ elem_classes=["checkbox"],
358
+ label="Clip skip",
359
+ value=False,
360
+ )
361
+
362
+ # Image-to-Image settings
363
+ gr.HTML("<h3>Image-to-Image</h3>")
364
  with gr.Row():
365
  image_prompt = gr.Image(
366
  show_share_button=False,
 
384
  format="png",
385
  type="pil",
386
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387
  with gr.Row():
388
  denoising_strength = gr.Slider(
389
  label="Initial Image Strength",
 
399
  value=Config.ANNOTATOR,
400
  filterable=False,
401
  )
 
402
  with gr.Row():
403
  disable_image = gr.Checkbox(
404
  label="Disable Initial Image",
 
421
  value=False,
422
  )
423
 
424
+ with gr.TabItem("ℹ️ Info"):
425
+ gr.Markdown(read_file("DOCS.md"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426
 
427
+ # Random prompt on click
428
  random_btn.click(random_fn, inputs=[], outputs=[prompt], show_api=False)
429
 
430
+ # Update seed on click
431
  refresh_btn.click(None, inputs=[], outputs=[seed], js=refresh_seed_js)
432
 
433
+ # Update seed button hover text
434
  seed.change(None, inputs=[seed], outputs=[], js=seed_js)
435
 
436
+ # Update image prompts file format
 
 
 
 
 
 
 
437
  file_format.change(
438
  lambda f: (
439
  gr.Gallery(format=f),
 
446
  show_api=False,
447
  )
448
 
449
+ # Update width and height on aspect ratio change
450
+ aspect_ratio.input(
451
+ None,
452
+ inputs=[aspect_ratio, width, height],
453
+ outputs=[width, height],
454
+ js=aspect_ratio_js,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455
  )
456
 
457
+ # Show "Custom" aspect ratio when manually changing width or height
458
  gr.on(
459
  triggers=[width.input, height.input],
460
  fn=None,
461
+ inputs=[width, height],
462
  outputs=[aspect_ratio],
463
+ js=custom_aspect_ratio_js,
464
  )
465
 
466
+ # Toggle image prompts by updating session state
467
  gr.on(
468
  triggers=[disable_image.input, disable_control_image.input, disable_ip_image.input],
469
+ fn=lambda image, control_image, ip_image: (image, control_image, ip_image),
 
 
 
 
470
  inputs=[disable_image, disable_control_image, disable_ip_image],
471
  outputs=[DISABLE_IMAGE_PROMPT, DISABLE_CONTROL_IMAGE_PROMPT, DISABLE_IP_IMAGE_PROMPT],
472
  )
473
 
474
+ # Generate images
475
  gr.on(
476
  triggers=[generate_btn.click, prompt.submit],
477
  fn=generate_fn,
partials/intro.html CHANGED
@@ -7,18 +7,7 @@
7
  <path d="M7.48877 6.75C7.29015 6.75 7.09967 6.82902 6.95923 6.96967C6.81879 7.11032 6.73989 7.30109 6.73989 7.5C6.73989 7.69891 6.81879 7.88968 6.95923 8.03033C7.09967 8.17098 7.29015 8.25 7.48877 8.25C7.68738 8.25 7.87786 8.17098 8.0183 8.03033C8.15874 7.88968 8.23764 7.69891 8.23764 7.5C8.23764 7.30109 8.15874 7.11032 8.0183 6.96967C7.87786 6.82902 7.68738 6.75 7.48877 6.75ZM7.8632 0C11.2331 0 11.3155 2.6775 9.54818 3.5625C8.80679 3.93 8.47728 4.7175 8.335 5.415C8.69446 5.565 9.00899 5.7975 9.24863 6.0975C12.0195 4.5975 15 5.19 15 7.875C15 11.25 12.3265 11.325 11.4428 9.5475C11.0684 8.805 10.2746 8.475 9.57813 8.3325C9.42836 8.6925 9.19621 9 8.89665 9.255C10.3869 12.0225 9.79531 15 7.11433 15C3.74438 15 3.67698 12.315 5.44433 11.43C6.17823 11.0625 6.50774 10.2825 6.65751 9.5925C6.29056 9.4425 5.96855 9.2025 5.72891 8.9025C2.96555 10.3875 0 9.8025 0 7.125C0 3.75 2.666 3.6675 3.54967 5.445C3.92411 6.1875 4.71043 6.51 5.40689 6.6525C5.54918 6.2925 5.78882 5.9775 6.09586 5.7375C4.60559 2.97 5.1972 0 7.8632 0Z"></path>
8
  </svg>
9
  </div>
10
- <div>
11
- <nav>
12
- <span>1.5</span>
13
- <a href="https://huggingface.co/spaces/adamelliotfields/diffusion-xl" target="_blank" rel="noopener noreferrer">XL</a>
14
- <a href="https://huggingface.co/spaces/adamelliotfields/diffusion-flux" target="_blank" rel="noopener noreferrer">FLUX.1</a>
15
- <a href="https://huggingface.co/spaces/adamelliotfields/diffusion/blob/main/DOCS.md" target="_blank" rel="noopener noreferrer">Docs</a>
16
- <a href="https://adamelliotfields-diffusion.hf.space" target="_blank" rel="noopener noreferrer">
17
- <svg style="display: inline-block" width="16px" height="16px" viewBox="0 0 12 12" fill="currentColor" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" preserveAspectRatio="xMidYMid meet">
18
- <path fill-rule="evenodd" clip-rule="evenodd" d="M7.5 1.75H9.75C9.88807 1.75 10 1.86193 10 2V4.25C10 4.38807 9.88807 4.5 9.75 4.5C9.61193 4.5 9.5 4.38807 9.5 4.25V2.60355L6.42678 5.67678C6.32915 5.77441 6.17085 5.77441 6.07322 5.67678C5.97559 5.57915 5.97559 5.42085 6.07322 5.32322L9.14645 2.25H7.5C7.36193 2.25 7.25 2.13807 7.25 2C7.25 1.86193 7.36193 1.75 7.5 1.75Z" fill="currentColor"></path>
19
- <path fill-rule="evenodd" clip-rule="evenodd" d="M6 2.5C6 2.22386 5.77614 2 5.5 2H2.69388C2.50985 2 2.33336 2.07311 2.20323 2.20323C2.0731 2.33336 2 2.50986 2 2.69389V8.93885C2 9.12288 2.0731 9.29933 2.20323 9.42953C2.33336 9.55963 2.50985 9.63273 2.69388 9.63273H8.93884C9.12287 9.63273 9.29941 9.55963 9.42951 9.42953C9.55961 9.29933 9.63271 9.12288 9.63271 8.93885V6.5C9.63271 6.22386 9.40885 6 9.13271 6C8.85657 6 8.63271 6.22386 8.63271 6.5V8.63273H3V3H5.5C5.77614 3 6 2.77614 6 2.5Z" fill="currentColor" fill-opacity="0.3"></path>
20
- </svg>
21
- </a>
22
- </nav>
23
- </div>
24
  </div>
 
7
  <path d="M7.48877 6.75C7.29015 6.75 7.09967 6.82902 6.95923 6.96967C6.81879 7.11032 6.73989 7.30109 6.73989 7.5C6.73989 7.69891 6.81879 7.88968 6.95923 8.03033C7.09967 8.17098 7.29015 8.25 7.48877 8.25C7.68738 8.25 7.87786 8.17098 8.0183 8.03033C8.15874 7.88968 8.23764 7.69891 8.23764 7.5C8.23764 7.30109 8.15874 7.11032 8.0183 6.96967C7.87786 6.82902 7.68738 6.75 7.48877 6.75ZM7.8632 0C11.2331 0 11.3155 2.6775 9.54818 3.5625C8.80679 3.93 8.47728 4.7175 8.335 5.415C8.69446 5.565 9.00899 5.7975 9.24863 6.0975C12.0195 4.5975 15 5.19 15 7.875C15 11.25 12.3265 11.325 11.4428 9.5475C11.0684 8.805 10.2746 8.475 9.57813 8.3325C9.42836 8.6925 9.19621 9 8.89665 9.255C10.3869 12.0225 9.79531 15 7.11433 15C3.74438 15 3.67698 12.315 5.44433 11.43C6.17823 11.0625 6.50774 10.2825 6.65751 9.5925C6.29056 9.4425 5.96855 9.2025 5.72891 8.9025C2.96555 10.3875 0 9.8025 0 7.125C0 3.75 2.666 3.6675 3.54967 5.445C3.92411 6.1875 4.71043 6.51 5.40689 6.6525C5.54918 6.2925 5.78882 5.9775 6.09586 5.7375C4.60559 2.97 5.1972 0 7.8632 0Z"></path>
8
  </svg>
9
  </div>
10
+ <p>
11
+ Stable Diffusion on ZeroGPU.
12
+ </p>
 
 
 
 
 
 
 
 
 
 
 
13
  </div>