import functools import inspect import json import os import time from contextlib import contextmanager from typing import Callable, Tuple, TypeVar import anyio import httpx import numpy as np import torch from anyio import Semaphore from diffusers.utils import logging as diffusers_logging from huggingface_hub._snapshot_download import snapshot_download from huggingface_hub.utils import are_progress_bars_disabled from PIL import Image from transformers import logging as transformers_logging from typing_extensions import ParamSpec from .annotators import CannyAnnotator from .logger import Logger T = TypeVar("T") P = ParamSpec("P") MAX_CONCURRENT_THREADS = 1 MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS) @contextmanager def timer(message="Operation", logger=print): start = time.perf_counter() logger(message) try: yield finally: end = time.perf_counter() logger(f"{message} took {end - start:.2f}s") @functools.lru_cache() def load_json(path: str) -> dict: with open(path, "r", encoding="utf-8") as file: return json.load(file) @functools.lru_cache() def read_file(path: str) -> str: with open(path, "r", encoding="utf-8") as file: return file.read() def disable_progress_bars(): transformers_logging.disable_progress_bar() diffusers_logging.disable_progress_bar() def enable_progress_bars(): # warns if `HF_HUB_DISABLE_PROGRESS_BARS` env var is not None transformers_logging.enable_progress_bar() diffusers_logging.enable_progress_bar() def safe_progress(progress, current=0, total=0, desc=""): if progress is not None: progress((current, total), desc=desc) def clear_cuda_cache(): if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() def download_repo_files(repo_id, allow_patterns, token=None): was_disabled = are_progress_bars_disabled() enable_progress_bars() snapshot_path = snapshot_download( repo_id=repo_id, repo_type="model", revision="main", token=token, allow_patterns=allow_patterns, ignore_patterns=None, ) if was_disabled: disable_progress_bars() return snapshot_path def download_civit_file(lora_id, version_id, file_path=".", token=None): base_url = "https://civitai.com/api/download/models" file = f"{file_path}/{lora_id}.{version_id}.safetensors" log = Logger("download_civit_file") if os.path.exists(file): return try: params = {"token": token} response = httpx.get( f"{base_url}/{version_id}", timeout=None, params=params, follow_redirects=True, ) response.raise_for_status() os.makedirs(file_path, exist_ok=True) with open(file, "wb") as f: f.write(response.content) except httpx.HTTPStatusError as e: log.error(f"{e.response.status_code} {e.response.text}") except httpx.RequestError as e: log.error(f"RequestError: {e}") def image_to_pil(image: Image.Image): """Converts various image inputs to RGB PIL Image.""" if isinstance(image, str) and os.path.isfile(image): image = Image.open(image) if isinstance(image, np.ndarray): image = Image.fromarray(image) if isinstance(image, Image.Image): return image.convert("RGB") raise ValueError("Invalid image input") def get_valid_image_size( width: int, height: int, step=64, min_size=512, max_size=4096, ): """Get new image dimensions while preserving aspect ratio.""" def round_down(x): return int((x // step) * step) def clamp(x): return max(min_size, min(x, max_size)) aspect_ratio = width / height # try width first if width > height: new_width = round_down(clamp(width)) new_height = round_down(new_width / aspect_ratio) else: new_height = round_down(clamp(height)) new_width = round_down(new_height * aspect_ratio) # if new dimensions are out of bounds, try height if not min_size <= new_width <= max_size: new_width = round_down(clamp(width)) new_height = round_down(new_width / aspect_ratio) if not min_size <= new_height <= max_size: new_height = round_down(clamp(height)) new_width = round_down(new_height * aspect_ratio) return (new_width, new_height) def resize_image( image: Image.Image, size: Tuple[int, int] = None, resampling: Image.Resampling = None, ): """Resize image with proper interpolation and dimension constraints.""" image = image_to_pil(image) if size is None: size = get_valid_image_size(*image.size) if resampling is None: resampling = Image.Resampling.LANCZOS return image.resize(size, resampling) def annotate_image(image: Image.Image, annotator="canny"): """Get the feature map of an image using the specified annotator.""" size = get_valid_image_size(*image.size) image = resize_image(image, size) if annotator.lower() == "canny": canny = CannyAnnotator() return canny(image, size) raise ValueError(f"Invalid annotator: {annotator}") # Like the original but supports args and kwargs instead of a dict # https://github.com/huggingface/huggingface-inference-toolkit/blob/0.2.0/src/huggingface_inference_toolkit/async_utils.py async def async_call(fn: Callable[P, T], *args: P.args, **kwargs: P.kwargs) -> T: async with MAX_THREADS_GUARD: sig = inspect.signature(fn) bound_args = sig.bind(*args, **kwargs) bound_args.apply_defaults() partial_fn = functools.partial(fn, **bound_args.arguments) return await anyio.to_thread.run_sync(partial_fn)