Spaces:
Running
Running
import numpy as np | |
import torch | |
from transformers import glue_convert_examples_to_features as convert_examples_to_features | |
from transformers import InputExample | |
class MyClassifier(): | |
def __init__(self,model,tokenizer,label_list,output_mode,exit_type,exit_value,model_type='albert',max_length=128): | |
self.model = model | |
self.model.eval() | |
self.model_type = model_type | |
self.tokenizer = tokenizer | |
self.label_list = label_list | |
self.output_mode = output_mode | |
self.max_length = max_length | |
self.exit_type = exit_type | |
self.exit_value = exit_value | |
self.count = 0 | |
self.reset_status(mode='all',stats=True) | |
if exit_type == 'patience': | |
self.set_patience(patience=exit_value) | |
elif exit_type == 'confi': | |
self.set_threshold(confidence_threshold=exit_value) | |
def tokenize(self,input_,idx): | |
examples = [] | |
guid = f"dev_{idx}" | |
if input_[1] == "<none>": | |
text_a = input_[0] | |
text_b = None | |
else: | |
text_a = input_[0] | |
text_b = input_[1] | |
# print(f'len: {len(input_)}\t text_a: {text_a}\t text_b:{text_b}') | |
label = None | |
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
# print(examples) | |
features = convert_examples_to_features( | |
examples, | |
self.tokenizer, | |
label_list=self.label_list, | |
max_length=self.max_length, | |
output_mode=self.output_mode, | |
) | |
# print(features) | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) | |
return all_input_ids,all_attention_mask,all_token_type_ids | |
def set_threshold(self,confidence_threshold): | |
if self.model_type == 'albert': | |
self.model.albert.set_confi_threshold(confidence_threshold) | |
elif self.model_type == 'bert': | |
self.model.bert.set_confi_threshold(confidence_threshold) | |
def set_patience(self,patience): | |
if self.model_type == 'albert': | |
self.model.albert.set_patience(patience) | |
elif self.model_type == 'bert': | |
self.model.bert.set_patience(patience) | |
def set_exit_position(self,exit_pos): | |
if self.model_type == 'albert': | |
self.model.albert.set_exit_pos(exit_pos) | |
def reset_status(self,mode,stats=False): | |
if self.model_type == 'albert': | |
self.model.albert.set_mode(mode) | |
if stats: | |
self.model.albert.reset_stats() | |
elif self.model_type == 'bert': | |
self.model.bert.set_mode(mode) | |
if stats: | |
self.model.bert.reset_stats() | |
def get_exit_number(self): | |
if self.model_type == 'albert': | |
return self.model.albert.config.num_hidden_layers | |
elif self.model_type == 'bert': | |
return self.model.bert.config.num_hidden_layers | |
def get_current_exit(self): | |
if self.model_type == 'albert': | |
return self.model.albert.current_exit_layer | |
elif self.model_type == 'bert': | |
return self.model.bert.current_exit_layer | |
# TODO: 改一下预测算法得到预测结果 | |
def get_pred(self,input_): | |
# print(self.get_prob(input_).argmax(axis=2).shape) | |
return self.get_prob(input_).argmax(axis=2) | |
def get_prob(self,input_): | |
self.reset_status(mode=self.exit_type,stats=False) # set patience | |
ret = [] | |
for sent in input_: | |
self.count+=1 | |
batch = self.tokenize(sent,idx=self.count) | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1],"token_type_ids":batch[2]} | |
outputs = self.model(**inputs)[0] # get all logits | |
output_ = torch.softmax(outputs,dim=1)[0].detach().cpu().numpy() | |
ret.append(output_) | |
return np.array(ret) | |
def get_prob_time(self,input_,exit_position): | |
self.reset_status(mode='exact',stats=False) # set patience | |
self.set_exit_position(exit_position) | |
ret = [] | |
for sent in input_: | |
self.count+=1 | |
batch = self.tokenize(sent,idx=self.count) | |
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "token_type_ids":batch[2]} | |
outputs = self.model(**inputs)[0] # get all logits | |
print(outputs) | |
output_ = [torch.softmax(output,dim=1)[0].detach().cpu().numpy() for output in outputs] | |
ret.append(output_) | |
return np.array(ret) |