Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch BERT model. """ | |
import logging | |
import math | |
import os | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from transformers.activations import gelu, gelu_new #, swish | |
from transformers.models.bert.configuration_bert import BertConfig | |
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward | |
from transformers.modeling_utils import PreTrainedModel, prune_linear_layer | |
from datetime import datetime | |
logger = logging.getLogger(__name__) | |
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
"bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", | |
"bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", | |
"bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", | |
"bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", | |
"bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", | |
"bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", | |
"bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", | |
"bert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", | |
"bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", | |
"bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", | |
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
"bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
"bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", | |
"bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin", | |
"bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin", | |
"bert-base-japanese": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-pytorch_model.bin", | |
"bert-base-japanese-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking-pytorch_model.bin", | |
"bert-base-japanese-char": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-pytorch_model.bin", | |
"bert-base-japanese-char-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking-pytorch_model.bin", | |
"bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/pytorch_model.bin", | |
"bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/pytorch_model.bin", | |
"bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/pytorch_model.bin", | |
} | |
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): | |
""" Load tf checkpoints in a pytorch model. | |
""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] | |
for n in name | |
): | |
logger.info("Skipping {}".format("/".join(name))) | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info("Skipping {}".format("/".join(name))) | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def mish(x): | |
return x * torch.tanh(nn.functional.softplus(x)) | |
# ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish} | |
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "gelu_new": gelu_new, "mish": mish} | |
BertLayerNorm = torch.nn.LayerNorm | |
class BertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if position_ids is None: | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BertSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention " | |
"heads (%d)" % (config.hidden_size, config.num_attention_heads) | |
) | |
self.output_attentions = config.output_attentions | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
): | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
if encoder_hidden_states is not None: | |
mixed_key_layer = self.key(encoder_hidden_states) | |
mixed_value_layer = self.value(encoder_hidden_states) | |
attention_mask = encoder_attention_mask | |
else: | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) | |
return outputs | |
class BertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = BertSelfAttention(config) | |
self.output = BertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) | |
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads | |
for head in heads: | |
# Compute how many pruned heads are before the head and move the index accordingly | |
head = head - sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
): | |
self_outputs = self.self( | |
hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class BertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = BertAttention(config) | |
self.is_decoder = config.is_decoder | |
if self.is_decoder: | |
self.crossattention = BertAttention(config) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
): | |
self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
if self.is_decoder and encoder_hidden_states is not None: | |
cross_attention_outputs = self.crossattention( | |
attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
outputs = (layer_output,) + outputs | |
return outputs | |
class BertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
): | |
all_hidden_states = () | |
all_attentions = () | |
for i, layer_module in enumerate(self.layer): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_outputs = layer_module( | |
hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask | |
) | |
hidden_states = layer_outputs[0] | |
if self.output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
# Add last layer | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = (hidden_states,) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (all_attentions,) | |
return outputs # last-layer hidden state, (all hidden states), (all attentions) | |
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None): | |
layer_outputs = self.layer[current_layer](hidden_states, attention_mask, head_mask[current_layer]) | |
hidden_states = layer_outputs[0] | |
return hidden_states | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class BertOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class BertOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
config_class = BertConfig | |
pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = load_tf_weights_in_bert | |
base_model_prefix = "bert" | |
def _init_weights(self, module): | |
""" Initialize the weights """ | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, BertLayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
BERT_START_DOCSTRING = r""" | |
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general | |
usage and behavior. | |
Parameters: | |
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
BERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`transformers.BertTokenizer`. | |
See :func:`transformers.PreTrainedTokenizer.encode` and | |
:func:`transformers.PreTrainedTokenizer.encode_plus` for details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Segment token indices to indicate first and second portions of the inputs. | |
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
corresponds to a `sentence B` token | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
if the model is configured as a decoder. | |
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask | |
is used in the cross-attention if the model is configured as a decoder. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
""" | |
class BertModel(BertPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well | |
as a decoder, in which case a layer of cross-attention is added between | |
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani, | |
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the | |
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an | |
:obj:`encoder_hidden_states` is expected as an input to the forward pass. | |
.. _`Attention is all you need`: | |
https://arxiv.org/abs/1706.03762 | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = BertEmbeddings(config) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) | |
self.init_weights() | |
# hyper-param for patience-based adaptive inference | |
self.patience = 0 | |
# threshold for confidence-based adaptive inference | |
self.confidence_threshold = 0.8 | |
# mode for fast_inference [True for patience-based/ False for confidence-based/ All classifier/ Last Classifier] | |
self.mode = 'patience' # [patience/confi/all/last] | |
self.inference_instances_num = 0 | |
self.inference_layers_num = 0 | |
# exits count log | |
self.exits_count_list = [0] * self.config.num_hidden_layers | |
# exits time log | |
self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)] | |
self.regression_threshold = 0 | |
def set_regression_threshold(self, threshold): | |
self.regression_threshold = threshold | |
def set_mode(self, patience='patience'): | |
self.mode = patience # mode for test-time inference | |
def set_patience(self, patience): | |
self.patience = patience | |
def set_confi_threshold(self, confidence_threshold): | |
self.confidence_threshold = confidence_threshold | |
def reset_stats(self): | |
self.inference_instances_num = 0 | |
self.inference_layers_num = 0 | |
self.exits_count_list = [0] * self.config.num_hidden_layers | |
self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)] | |
def log_stats(self): | |
avg_inf_layers = self.inference_layers_num / self.inference_instances_num | |
message = f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up = {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***' | |
print(message) | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
See base class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
output_dropout=None, | |
output_layers=None, | |
regression=False | |
): | |
r""" | |
Return: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): | |
Last layer hidden-state of the first token of the sequence (classification token) | |
further processed by a Linear layer and a Tanh activation function. The Linear | |
layer weights are trained from the next sentence prediction (classification) | |
objective during pre-training. | |
This output is usually *not* a good summary | |
of the semantic content of the input, you're often better with averaging or pooling | |
the sequence of hidden-states for the whole input sequence. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertModel, BertTokenizer | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertModel.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
# Provided a padding mask of dimensions [batch_size, seq_length] | |
# - if the model is a decoder, apply a causal mask in addition to the padding mask | |
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder: | |
batch_size, seq_length = input_shape | |
seq_ids = torch.arange(seq_length, device=device) | |
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] | |
causal_mask = causal_mask.to( | |
attention_mask.dtype | |
) # causal and attention masks must have same type with pytorch version < 1.3 | |
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] | |
else: | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | |
input_shape, attention_mask.shape | |
) | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
# If a 2D ou 3D attention mask is provided for the cross-attention | |
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
if encoder_attention_mask.dim() == 3: | |
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] | |
elif encoder_attention_mask.dim() == 2: | |
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
"Wrong shape for encoder_hidden_shape (shape {}) or encoder_attention_mask (shape {})".format( | |
encoder_hidden_shape, encoder_attention_mask.shape | |
) | |
) | |
encoder_extended_attention_mask = encoder_extended_attention_mask.to( | |
dtype=next(self.parameters()).dtype | |
) # fp16 compatibility | |
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = ( | |
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) | |
) # We can specify head_mask for each layer | |
head_mask = head_mask.to( | |
dtype=next(self.parameters()).dtype | |
) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
embedding_output = self.embeddings( | |
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds | |
) | |
encoder_outputs = embedding_output | |
if self.training: | |
res = [] | |
for i in range(self.config.num_hidden_layers): | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler(encoder_outputs) | |
logits = output_layers[i](output_dropout(pooled_output)) | |
res.append(logits) | |
elif self.mode == 'last': # Use all layers for inference | |
encoder_outputs = self.encoder(encoder_outputs, | |
extended_attention_mask, | |
head_mask=head_mask) | |
pooled_output = self.pooler(encoder_outputs[0]) | |
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)] | |
elif self.mode == 'all': | |
tic = datetime.now() | |
res = [] | |
for i in range(self.config.num_hidden_layers): | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler(encoder_outputs) | |
logits = output_layers[i](output_dropout(pooled_output)) | |
toc = datetime.now() | |
exit_time = (toc - tic).total_seconds() | |
res.append(logits) | |
self.exits_time_list[i].append(exit_time) | |
elif self.mode == 'patience': | |
if self.patience <=0: | |
raise ValueError("Patience must be greater than 0") | |
patient_counter = 0 | |
patient_result = None | |
calculated_layer_num = 0 | |
tic = datetime.now() | |
for i in range(self.config.num_hidden_layers): | |
calculated_layer_num += 1 | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler(encoder_outputs) | |
logits = output_layers[i](pooled_output) | |
if regression: | |
labels = logits.detach() | |
if patient_result is not None: | |
patient_labels = patient_result.detach() | |
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: | |
patient_counter += 1 | |
else: | |
patient_counter = 0 | |
else: | |
labels = logits.detach().argmax(dim=1) | |
if patient_result is not None: | |
patient_labels = patient_result.detach().argmax(dim=1) | |
if (patient_result is not None) and torch.all(labels.eq(patient_labels)): | |
patient_counter += 1 | |
else: | |
patient_counter = 0 | |
patient_result = logits | |
if patient_counter == self.patience: | |
break | |
toc = datetime.now() | |
self.exit_time = (toc - tic).total_seconds() | |
res = [patient_result] | |
self.inference_layers_num += calculated_layer_num | |
self.inference_instances_num += 1 | |
self.current_exit_layer = calculated_layer_num | |
# LOG EXIT POINTS COUNTS | |
self.exits_count_list[calculated_layer_num-1] += 1 | |
elif self.mode == 'confi': | |
if self.confidence_threshold<0 or self.confidence_threshold>1: | |
raise ValueError('Confidence Threshold must be set within the range 0-1') | |
calculated_layer_num = 0 | |
tic = datetime.now() | |
for i in range(self.config.num_hidden_layers): | |
calculated_layer_num += 1 | |
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs, | |
current_layer=i, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask | |
) | |
pooled_output = self.pooler(encoder_outputs) | |
logits = output_layers[i](pooled_output) | |
labels = logits.detach().argmax(dim=1) | |
logits_max,_ = logits.detach().softmax(dim=1).max(dim=1) | |
confi_result = logits | |
if torch.all(logits_max.gt(self.confidence_threshold)): | |
break | |
toc = datetime.now() | |
self.exit_time = (toc - tic).total_seconds() | |
res = [confi_result] | |
self.inference_layers_num += calculated_layer_num | |
self.inference_instances_num += 1 | |
self.current_exit_layer = calculated_layer_num | |
# LOG EXIT POINTS COUNTS | |
self.exits_count_list[calculated_layer_num-1] += 1 | |
return res | |
class BertForPreTraining(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertPreTrainingHeads(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
masked_lm_labels=None, | |
next_sentence_label=None, | |
): | |
r""" | |
masked_lm_labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`): | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring) | |
Indices should be in ``[0, 1]``. | |
``0`` indicates sequence B is a continuation of sequence A, | |
``1`` indicates sequence B is a random sequence. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. | |
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, 2)`): | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False | |
continuation before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForPreTraining | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForPreTraining.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
prediction_scores, seq_relationship_scores = outputs[:2] | |
""" | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output, pooled_output = outputs[:2] | |
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
outputs = (prediction_scores, seq_relationship_score,) + outputs[ | |
2: | |
] # add hidden states and attention if they are here | |
if masked_lm_labels is not None and next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
total_loss = masked_lm_loss + next_sentence_loss | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions) | |
class BertForMaskedLM(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertOnlyMLMHead(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
masked_lm_labels=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
lm_labels=None, | |
): | |
r""" | |
masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the masked language modeling loss. | |
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the left-to-right language modeling loss (next word prediction). | |
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels | |
in ``[0, ..., config.vocab_size]`` | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Masked language modeling loss. | |
ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`lm_labels` is provided): | |
Next token prediction loss. | |
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`) | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForMaskedLM | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForMaskedLM.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, masked_lm_labels=input_ids) | |
loss, prediction_scores = outputs[:2] | |
""" | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here | |
# Although this may seem awkward, BertForMaskedLM supports two scenarios: | |
# 1. If a tensor that contains the indices of masked labels is provided, | |
# the cross-entropy is the MLM cross-entropy that measures the likelihood | |
# of predictions for masked words. | |
# 2. If `lm_labels` is provided we are in a causal scenario where we | |
# try to predict the next token for each input in the decoder. | |
if masked_lm_labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
outputs = (masked_lm_loss,) + outputs | |
if lm_labels is not None: | |
# we are doing next-token prediction; shift prediction scores and input ids by one | |
prediction_scores = prediction_scores[:, :-1, :].contiguous() | |
lm_labels = lm_labels[:, 1:].contiguous() | |
loss_fct = CrossEntropyLoss() | |
ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), lm_labels.view(-1)) | |
outputs = (ltr_lm_loss,) + outputs | |
return outputs # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions) | |
class BertForNextSentencePrediction(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.cls = BertOnlyNSPHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
next_sentence_label=None, | |
): | |
r""" | |
next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) | |
Indices should be in ``[0, 1]``. | |
``0`` indicates sequence B is a continuation of sequence A, | |
``1`` indicates sequence B is a random sequence. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided): | |
Next sequence prediction (classification) loss. | |
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, 2)`): | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForNextSentencePrediction | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
seq_relationship_scores = outputs[0] | |
""" | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
pooled_output = outputs[1] | |
seq_relationship_score = self.cls(pooled_output) | |
outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here | |
if next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss() | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
outputs = (next_sentence_loss,) + outputs | |
return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions) | |
class BertForSequenceClassification(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the sequence classification/regression loss. | |
Indices should be in :obj:`[0, ..., config.num_labels - 1]`. | |
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForSequenceClassification | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, logits = outputs[:2] | |
""" | |
logits = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_dropout=self.dropout, | |
output_layers=self.classifiers, | |
regression=self.num_labels == 1 | |
) | |
if self.bert.mode == 'all': | |
outputs = (logits,) | |
else: | |
outputs = (logits[-1],) | |
if labels is not None: | |
total_loss = None | |
total_weights = 0 | |
for ix, logits_item in enumerate(logits): | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits_item.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1)) | |
if total_loss is None: | |
total_loss = loss | |
else: | |
total_loss += loss * (ix + 1) | |
total_weights += ix + 1 | |
outputs = (total_loss / total_weights,) + outputs | |
return outputs # (loss), logits, (hidden_states), (attentions) | |
class BertForMultipleChoice(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the multiple choice classification loss. | |
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above) | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor`` of shape ``(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Classification loss. | |
classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): | |
`num_choices` is the second dimension of the input tensors. (see `input_ids` above). | |
Classification scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForMultipleChoice | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForMultipleChoice.from_pretrained('bert-base-uncased') | |
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] | |
input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices | |
labels = torch.tensor(1).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, classification_scores = outputs[:2] | |
""" | |
num_choices = input_ids.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
outputs = (loss,) + outputs | |
return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
class BertForTokenClassification(BertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for computing the token classification loss. | |
Indices should be in ``[0, ..., config.num_labels - 1]``. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : | |
Classification loss. | |
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`) | |
Classification scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForTokenClassification | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForTokenClassification.from_pretrained('bert-base-uncased') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=labels) | |
loss, scores = outputs[:2] | |
""" | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels)[active_loss] | |
active_labels = labels.view(-1)[active_loss] | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), scores, (hidden_states), (attentions) | |
class BertForQuestionAnswering(BertPreTrainedModel): | |
def __init__(self, config): | |
super(BertForQuestionAnswering, self).__init__(config) | |
self.num_labels = config.num_labels | |
self.bert = BertModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). | |
Position outside of the sequence are not taken into account for computing the loss. | |
Returns: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): | |
Span-start scores (before SoftMax). | |
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): | |
Span-end scores (before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import BertTokenizer, BertForQuestionAnswering | |
import torch | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') | |
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
input_ids = tokenizer.encode(question, text) | |
token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] | |
start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) | |
all_tokens = tokenizer.convert_ids_to_tokens(input_ids) | |
answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) | |
assert answer == "a nice puppet" | |
""" | |
outputs = self.bert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
outputs = (start_logits, end_logits,) + outputs[2:] | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
outputs = (total_loss,) + outputs | |
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions) | |