Spaces:
Running
Running
import torch | |
import gradio as gr | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", | |
torch_dtype = torch.bfloat16, device=0) | |
def summary (input): | |
output = text_summary(input) | |
return output[0]['summary_text'] | |
gr.close_all() | |
# demo = gr.Interface(fn=summary, inputs="text", outputs="text") | |
demo = gr.Interface(fn=summary, | |
inputs=[gr.Textbox(label="Input the text to summarize")], | |
outputs=[gr.Textbox(label="Summarized text")], | |
title="Text summarizer", | |
) | |
demo.launch() | |