adeelshuaib commited on
Commit
d11b9b3
·
verified ·
1 Parent(s): 5394340

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -34
app.py CHANGED
@@ -1,11 +1,11 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,50 +15,67 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ from gtts import gTTS
4
+ import os
 
 
 
5
 
6
+ # Load the AgriQBot model from Hugging Face using the transformers library
7
+ tokenizer = AutoTokenizer.from_pretrained("mrSoul7766/AgriQBot")
8
+ model = AutoModelForSeq2SeqLM.from_pretrained("mrSoul7766/AgriQBot")
9
 
10
  def respond(
11
  message,
 
15
  temperature,
16
  top_p,
17
  ):
18
+ """
19
+ Respond to user queries using the AgriQBot model.
20
+ Args:
21
+ - message: User query (string).
22
+ - history: List of previous (user, assistant) message pairs.
23
+ - system_message: System-level instructions for the assistant.
24
+ - max_tokens: Maximum number of tokens in the response.
25
+ - temperature: Controls randomness in response.
26
+ - top_p: Controls diversity of the response.
27
+
28
+ Returns:
29
+ - Response string as the chatbot's answer.
30
+ """
31
  messages = [{"role": "system", "content": system_message}]
32
 
33
+ # Construct the conversation history
34
  for val in history:
35
  if val[0]:
36
  messages.append({"role": "user", "content": val[0]})
37
  if val[1]:
38
  messages.append({"role": "assistant", "content": val[1]})
39
 
40
+ # Append the current user message
41
  messages.append({"role": "user", "content": message})
42
 
43
+ # Tokenize the input and generate the response
44
+ inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
45
+ outputs = model.generate(**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p)
 
 
 
 
 
 
 
46
 
47
+ # Decode the response and return it
48
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
49
+ return response
50
 
51
+ def text_to_voice(response):
52
+ """
53
+ Convert the response text to speech using Google Text-to-Speech.
54
+ Args:
55
+ - response: Text response from the model to be converted to speech.
56
+ """
57
+ tts = gTTS(text=response, lang='en')
58
+ tts.save("response.mp3")
59
+ os.system("start response.mp3") # Use 'open' for macOS, 'xdg-open' for Linux
60
 
61
+ # Build the Gradio Interface
62
+ demo = gr.Interface(
63
+ fn=respond,
64
+ inputs=[
65
+ gr.Textbox(value="You are a friendly farming assistant. Answer the user's questions related to farming.", label="System Message"),
66
+ gr.Textbox(label="Enter your question about farming:"),
67
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
 
68
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
69
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
70
  ],
71
+ outputs=[
72
+ gr.Textbox(label="Chatbot Response"),
73
+ gr.Audio(value="response.mp3", label="Audio Response")
74
+ ],
75
+ title="Farming Assistant Chatbot",
76
+ description="Ask questions about farming, crop management, pest control, soil conditions, and best agricultural practices."
77
  )
78
 
79
+ # Launch the interface
80
  if __name__ == "__main__":
81
  demo.launch()