Spaces:
Sleeping
Sleeping
adeelshuaib
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,50 +15,67 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from gtts import gTTS
|
4 |
+
import os
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load the AgriQBot model from Hugging Face using the transformers library
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("mrSoul7766/AgriQBot")
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("mrSoul7766/AgriQBot")
|
9 |
|
10 |
def respond(
|
11 |
message,
|
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
+
"""
|
19 |
+
Respond to user queries using the AgriQBot model.
|
20 |
+
Args:
|
21 |
+
- message: User query (string).
|
22 |
+
- history: List of previous (user, assistant) message pairs.
|
23 |
+
- system_message: System-level instructions for the assistant.
|
24 |
+
- max_tokens: Maximum number of tokens in the response.
|
25 |
+
- temperature: Controls randomness in response.
|
26 |
+
- top_p: Controls diversity of the response.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
- Response string as the chatbot's answer.
|
30 |
+
"""
|
31 |
messages = [{"role": "system", "content": system_message}]
|
32 |
|
33 |
+
# Construct the conversation history
|
34 |
for val in history:
|
35 |
if val[0]:
|
36 |
messages.append({"role": "user", "content": val[0]})
|
37 |
if val[1]:
|
38 |
messages.append({"role": "assistant", "content": val[1]})
|
39 |
|
40 |
+
# Append the current user message
|
41 |
messages.append({"role": "user", "content": message})
|
42 |
|
43 |
+
# Tokenize the input and generate the response
|
44 |
+
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
|
45 |
+
outputs = model.generate(**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Decode the response and return it
|
48 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
return response
|
50 |
|
51 |
+
def text_to_voice(response):
|
52 |
+
"""
|
53 |
+
Convert the response text to speech using Google Text-to-Speech.
|
54 |
+
Args:
|
55 |
+
- response: Text response from the model to be converted to speech.
|
56 |
+
"""
|
57 |
+
tts = gTTS(text=response, lang='en')
|
58 |
+
tts.save("response.mp3")
|
59 |
+
os.system("start response.mp3") # Use 'open' for macOS, 'xdg-open' for Linux
|
60 |
|
61 |
+
# Build the Gradio Interface
|
62 |
+
demo = gr.Interface(
|
63 |
+
fn=respond,
|
64 |
+
inputs=[
|
65 |
+
gr.Textbox(value="You are a friendly farming assistant. Answer the user's questions related to farming.", label="System Message"),
|
66 |
+
gr.Textbox(label="Enter your question about farming:"),
|
67 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
|
|
68 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
69 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
],
|
71 |
+
outputs=[
|
72 |
+
gr.Textbox(label="Chatbot Response"),
|
73 |
+
gr.Audio(value="response.mp3", label="Audio Response")
|
74 |
+
],
|
75 |
+
title="Farming Assistant Chatbot",
|
76 |
+
description="Ask questions about farming, crop management, pest control, soil conditions, and best agricultural practices."
|
77 |
)
|
78 |
|
79 |
+
# Launch the interface
|
80 |
if __name__ == "__main__":
|
81 |
demo.launch()
|