import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from gtts import gTTS import os # Load the AgriQBot model from Hugging Face using the transformers library tokenizer = AutoTokenizer.from_pretrained("mrSoul7766/AgriQBot") model = AutoModelForSeq2SeqLM.from_pretrained("mrSoul7766/AgriQBot") def respond( message, history=None, # Set history default to None max_tokens=512, temperature=0.7, top_p=0.95, ): """ Respond to user queries using the AgriQBot model. Args: - message: User query (string). - history: List of previous (user, assistant) message pairs (default is None). - max_tokens: Maximum number of tokens in the response. - temperature: Controls randomness in response. - top_p: Controls diversity of the response. Returns: - Response string as the chatbot's answer. """ if history is None: history = [] # Initialize history to an empty list if None messages = [{"role": "system", "content": "You are a friendly farming assistant. Answer the user's questions related to farming."}] # Construct the conversation history for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Append the current user message messages.append({"role": "user", "content": message}) # Tokenize the input and generate the response inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True) outputs = model.generate(**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p) # Decode the response and return it response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Convert the response to speech and save as an audio file tts = gTTS(text=response, lang='en') audio_path = "response.mp3" tts.save(audio_path) return response, audio_path # Build the Gradio Interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="Enter your question about farming:"), ], outputs=[ gr.Textbox(label="Chatbot Response"), gr.Audio(label="Audio Response") # Expect audio as well as text output ], title="Farming Assistant Chatbot", description="Ask questions about farming, crop management, pest control, soil conditions, and best agricultural practices." ) # Launch the interface if __name__ == "__main__": demo.launch()